The complexity of combinatorial optimization problems on d-dimensional boxes

被引:17
|
作者
Chlebik, Miroslav
Chlebikova, Janka
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Comenius Univ, Fac Math Phys & Informat, Bratislava 84248, Slovakia
关键词
independent set; geometric intersection graphs; rectangle graphs;
D O I
10.1137/050629276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Maximum Independent Set problem in d-box graphs, i.e., in intersection graphs of axis-parallel rectangles in R-d, is known to be NP-hard for any fixed d >= 2. A challenging open problem is that of how closely the solution can be approximated by a polynomial time algorithm. For the restricted case of d-boxes with bounded aspect ratio a PTAS exists [T. Erlebach, K. Jansen, and E. Seidel, SIAM J. Comput., 34 (2005), pp. 1302-1323]. In the general case no polynomial time algorithm with approximation ratio o(log(d-1)n) for a set of n d-boxes is known. In this paper we prove APX-hardness of the MAXIMUM INDEPENDENT SET problem in d-box graphs for any fixed d >= 3. We give an explicit lower bound 245/244 on efficient approximability for this problem unless P = NP. Additionally, we provide a generic method how to prove APX-hardness for other graph optimization problems in d-box graphs for any fixed d >= 3.
引用
收藏
页码:158 / 169
页数:12
相关论文
共 50 条
  • [41] Antibandwidth of d-Dimensional Meshes
    Torok, Lubomir
    Vrt'o, Imrich
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 471 - +
  • [42] D-dimensional log gravity
    Alishahiha, Mohsen
    Fareghbal, Reza
    PHYSICAL REVIEW D, 2011, 83 (08):
  • [43] D-DIMENSIONAL MOMENTS OF INERTIA
    BENDER, CM
    MEAD, LR
    AMERICAN JOURNAL OF PHYSICS, 1995, 63 (11) : 1011 - 1014
  • [45] COMPLEXITY OF APPROXIMATE SOLUTION OF COMBINATORIAL PROBLEMS
    NIGMATULLIN, RG
    DOKLADY AKADEMII NAUK SSSR, 1975, 224 (02): : 289 - 292
  • [46] On the computational complexity of combinatorial flexibility problems
    Leoni, V. A.
    Nasini, G. L.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (15) : 3330 - 3343
  • [47] Partition problems in high dimensional boxes
    Bucic, Matija
    Lidicky, Bernard
    Long, Jason
    Wagner, Adam Zsolt
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 166 : 315 - 336
  • [48] D-Dimensional Metrics with D−3 Symmetries
    A. Szereszewski
    J. Tafel
    M. Jakimowicz
    International Journal of Theoretical Physics, 2012, 51 : 1360 - 1369
  • [49] Packing d-dimensional bins in d stages
    Caprara, Alberto
    MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (01) : 203 - 215
  • [50] Linear and Fisher Separability of Random Points in the d-Dimensional Spherical Layer and Inside the d-Dimensional Cube
    Sidorov, Sergey
    Zolotykh, Nikolai
    ENTROPY, 2020, 22 (11) : 1 - 20