Wave-current interaction with three-dimensional bodies in a channel

被引:8
|
作者
Huang, J. [1 ]
Teng, B. [1 ]
Cong, P. W. [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Wave-current interaction; Wave channel; Side-wall effects; Frequency-domain method; GREEN-FUNCTION; MARINE STRUCTURES; FORCES; CYLINDER; BODY; SCATTERING; RADIATION; MOMENT; WATER; DRIFT;
D O I
10.1016/j.oceaneng.2022.110952
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A frequency-domain numerical model is developed to investigate the hydrodynamic properties of threedimensional bodies of arbitrary geometry subjected to the action of waves and weak current in a channel based on higher order boundary element method. The problem is divided into a steady problem and an unsteady problem to be solved separately, where the unsteady potentials are given by two sets of integral equations based on linearizing the channel Green function and the velocity potential with the normalized current speed. The firstorder wave force is obtained by the pressure integration over the body surface and the second-order drift force is evaluated by the far-field analysis. After examining the validation of the numerical model with some generalized relations derived in the present study, numerical studies for a Lewis-form ship and a four-column structure are performed to investigate the influence of channel walls on the hydrodynamic properties of bodies. Numerical results show that compared with the open-sea results, the side-wall effects become obvious when the oscillating frequencies are close to the transverse resonant frequencies of the channel, and compared with the cases without current, the current effects may enhance the interaction between the body and the reflected waves from the channel walls.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A simple model of wave-current interaction
    Tambroni, Nicoletta
    Blondeaux, Paolo
    Vittori, Giovanna
    JOURNAL OF FLUID MECHANICS, 2015, 775 : 328 - 348
  • [32] Experimental study on wave-current interaction
    Lee, Kwang-ho
    Mizutani, Norimi
    Komatsu, Katsuhiro
    Hur, Dong-Soo
    PROCEEDINGS OF THE SIXTEENTH (2006) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2006, : 600 - +
  • [33] The wave-current interaction in the coastal area
    Komijani, Homayoon
    Monbaliu, Jaak
    JOURNAL OF MARINE RESEARCH, 2019, 77 (5-6) : 375 - 405
  • [34] WAVE-CURRENT INTERACTION AND SEDIMENT TRANSPORT
    VANDEGRAAFF, J
    SEDIMENT TRANSPORT MODELING: PROCEEDINGS OF AN INTERNATIONAL SYMPOSIUM, 1989, : 242 - 247
  • [35] Some observations of wave-current interaction
    Wolf, J
    Prandle, D
    COASTAL ENGINEERING, 1999, 37 (3-4) : 471 - 485
  • [36] Investigation of wave-current interaction for a tidal current turbine
    El-Shahat, Saeed A.
    Li, Guojun
    Fu, Lei
    ENERGY, 2021, 227
  • [37] EFFECT OF WAVE-CURRENT INTERACTION ON STRONG TIDAL CURRENT
    Jakovljevic, Aleksandar
    Dumont, Martin
    Dias, Frederic
    PROCEEDINGS OF THE ASME 37TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2018, VOL 10, 2018,
  • [38] COMPARISON OF WAVE-CURRENT INTERACTION FORMULATION USING THE POLCOMS-WAM WAVE-CURRENT MODEL
    Bolanos, Rodolfo
    Wolf, Judith
    Brown, Jennifer
    Osuna, Pedro
    Monbaliu, Jaak
    Sanchez-Arcilla, Agustin
    COASTAL ENGINEERING 2008, VOLS 1-5, 2009, : 521 - +
  • [39] Advanced wave modeling, including wave-current interaction
    Babanin, Alexander V.
    van der Weshuijsen, Andre
    Chalikov, Dmitry
    Rogers, W. Erick
    JOURNAL OF MARINE RESEARCH, 2017, 75 (03) : 239 - 262
  • [40] Improvement of the full-range equation for bottom friction under three-dimensional wave-current combined motion
    Ahmad, S
    Tanaka, H
    COASTAL ENGINEERING, 1997, 31 (1-4) : 217 - 229