Real-time identification of vehicle motion-modes using neural networks

被引:14
|
作者
Wang, Lifu [1 ]
Zhang, Nong [1 ]
Du, Haiping [2 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Elect Mech & Mechatron Syst, Sydney, NSW 2007, Australia
[2] Univ Wollongong, Sch Elect Comp & Telecommun Engn, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Vehicle dynamics; Identification; Motion-mode; Neural networks; Motion-mode energy method;
D O I
10.1016/j.ymssp.2014.05.043
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A four-wheel ground vehicle has three body-dominated motion-modes, that is, bounce, roll, and pitch motion-modes. Real-time identification of these motion-modes can make vehicle suspensions, in particular, active suspensions, target on the dominant motion-mode and apply appropriate control strategies to improve its performance with less power consumption. Recently, a motion-mode energy method (MEM) was developed to identify the vehicle body motion-modes. However, this method requires the measurement of full vehicle states and road inputs, which are not always available in practice. This paper proposes an alternative approach to identify vehicle primary motion-modes with acceptable accuracy by employing neural networks (NNs). The effectiveness of the trained NNs is verified on a 10-DOF full-car model under various types of excitation inputs. The results confirm that the proposed method is effective in determining vehicle primary motion-modes with comparable accuracy to the MEM method. Experimental data is further used to validate the proposed method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:632 / 645
页数:14
相关论文
共 50 条
  • [21] Real-Time Vehicle Traffic Prediction in Apache Spark Using Ensemble Learning for Deep Neural Networks
    Sundareswaran, Anveshrithaa
    Lavanya, K.
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2020, 16 (04) : 19 - 36
  • [22] Identification of execution modes for real-time systems using cluster analysis
    Zagalo, Kevin
    Cucu-Grosjean, Liliana
    Bar-Hen, Avner
    2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2020, : 1169 - 1172
  • [23] Real-time construction of neural networks
    Li, Kang
    Peng, Jian Xun
    Fei, Minrui
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 140 - 149
  • [24] Neural networks for real-time control
    Narendra, KS
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1026 - 1031
  • [25] Real-time identification of the draft system using neural network
    Soon Yong Chun
    Han Jo Bae
    Seon Mi Kim
    Moon W. Suh
    P. Grady
    Won Seok Lyoo
    Won Sik Yoon
    Sung Soo Han
    Fibers and Polymers, 2006, 7 : 62 - 65
  • [26] Real-time identification of the draft system using neural network
    Chun, SY
    Bae, HJ
    Kim, SM
    Suh, MW
    Grady, P
    Lyoo, WS
    Yoon, WS
    Han, SS
    FIBERS AND POLYMERS, 2006, 7 (01) : 62 - 65
  • [27] Schedulability checking in real-time systems using neural networks
    Davoli, Renzo
    Tamburini, Fabio
    Giachini, Luigi-Alberto
    Fiumana, Franca
    Journal of artificial neural networks, 1995, 2 (04): : 421 - 430
  • [28] REAL-TIME CONTROL OF A TOKAMAK PLASMA USING NEURAL NETWORKS
    BISHOP, CM
    HAYNES, PS
    SMITH, MEU
    TODD, TN
    TROTMAN, DL
    NEURAL COMPUTATION, 1995, 7 (01) : 206 - 217
  • [29] Real-time detection of uncalibrated sensors using neural networks
    Luis J. Muñoz-Molina
    Ignacio Cazorla-Piñar
    Juan P. Dominguez-Morales
    Luis Lafuente
    Fernando Perez-Peña
    Neural Computing and Applications, 2022, 34 : 8227 - 8239
  • [30] Real-time head orientation estimation using neural networks
    Zhao, L
    Pingali, G
    Carlbom, I
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 297 - 300