Real-time identification of vehicle motion-modes using neural networks

被引:14
|
作者
Wang, Lifu [1 ]
Zhang, Nong [1 ]
Du, Haiping [2 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Elect Mech & Mechatron Syst, Sydney, NSW 2007, Australia
[2] Univ Wollongong, Sch Elect Comp & Telecommun Engn, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Vehicle dynamics; Identification; Motion-mode; Neural networks; Motion-mode energy method;
D O I
10.1016/j.ymssp.2014.05.043
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A four-wheel ground vehicle has three body-dominated motion-modes, that is, bounce, roll, and pitch motion-modes. Real-time identification of these motion-modes can make vehicle suspensions, in particular, active suspensions, target on the dominant motion-mode and apply appropriate control strategies to improve its performance with less power consumption. Recently, a motion-mode energy method (MEM) was developed to identify the vehicle body motion-modes. However, this method requires the measurement of full vehicle states and road inputs, which are not always available in practice. This paper proposes an alternative approach to identify vehicle primary motion-modes with acceptable accuracy by employing neural networks (NNs). The effectiveness of the trained NNs is verified on a 10-DOF full-car model under various types of excitation inputs. The results confirm that the proposed method is effective in determining vehicle primary motion-modes with comparable accuracy to the MEM method. Experimental data is further used to validate the proposed method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:632 / 645
页数:14
相关论文
共 50 条
  • [1] Real-time identification of vehicle body motion-modes based on motion-mode energy method
    Zhang, Nong
    Chen, Tong
    Zheng, Minyi
    Luo, Liang
    Liu, Pengfei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 143
  • [2] REAL-TIME VEHICLE DETECTION AND TRACKING USING DEEP NEURAL NETWORKS
    Gu, Xiao-Feng
    Chen, Zi-Wei
    Ma, Ting-Song
    Li, Fan
    Yan, Long
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 167 - 170
  • [3] Neural networks applied in real-time identification
    Dohnal, J.
    Pivonka, P.
    Annals of DAAAM for 2004 & Proceedings of the 15th International DAAAM Symposium: INTELLIGNET MANUFACTURING & AUTOMATION: GLOBALISATION - TECHNOLOGY - MEN - NATURE, 2004, : 95 - 96
  • [4] Real-time optimization in electric vehicle stations using artificial neural networks
    Elkasrawy, M. A.
    Abdellatif, Sameh O.
    Ebrahim, Gamal A.
    Ghali, Hani A.
    ELECTRICAL ENGINEERING, 2023, 105 (01) : 79 - 89
  • [5] Real-time optimization in electric vehicle stations using artificial neural networks
    M. A. Elkasrawy
    Sameh O. Abdellatif
    Gamal A. Ebrahim
    Hani A. Ghali
    Electrical Engineering, 2023, 105 : 79 - 89
  • [6] Real-time identification of μ wave with wavelet neural networks
    Chen, CW
    Ju, MS
    Lin, CCK
    1ST INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2003, CONFERENCE PROCEEDINGS, 2003, : 218 - 220
  • [7] REAL-TIME TRACK IDENTIFICATION WITH ARTIFICIAL NEURAL NETWORKS
    ATHANASIU, G
    PAVLOPOULOS, P
    VLACHOS, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 324 (1-2): : 320 - 329
  • [8] Efficient Neural Networks for Real-time Motion Style Transfer
    Smith, Harrison Jesse
    Cao, Chen
    Nef, Michael
    Wang, Yingying
    PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2019, 2 (02)
  • [9] A Real-time system for the automatic identification of motorcycle - using Artificial Neural Networks
    Pillai, B. Raveendran
    Kumar, Sukesh A.
    ICCN: 2008 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING, 2008, : 445 - +
  • [10] Towards real-time fault identification in plasma etching using neural networks
    Zhang, BY
    May, GS
    ASMC 98 PROCEEDINGS - 1998 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP: THEME - SEMICONDUCTOR MANUFACTURING: MEETING THE CHALLENGES OF THE GLOBAL MARKETPLACE, 1998, : 61 - 65