Projection-based gradient descent training of radial basis function networks

被引:0
|
作者
Muezzinoglu, MK [1 ]
Zurada, JM [1 ]
机构
[1] Univ Louisville, Computat Intelligence Lab, Louisville, KY 40292 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new Radial Basis Function (RBF) network training procedure that employs a linear projection technique along parameter search is proposed. To be applied simultaneously with the conventional center and/or weight adjustment methods, a gradient descent iteration on the width parameters of RBF units is introduced. The projection mechanism used by the procedure avoids negative width parameters and enables detection of redundant units, which can then be pruned from the network. Proposed training approach is applied to design a feedback neuro-controller for a nonlinear plant to track a desired trajectory.
引用
收藏
页码:1297 / 1302
页数:6
相关论文
共 50 条
  • [21] QUANTUM SPEEDUP OF TRAINING RADIAL BASIS FUNCTION NETWORKS
    Shao, Changpeng
    QUANTUM INFORMATION & COMPUTATION, 2019, 19 (7-8) : 609 - 625
  • [22] Training radial basis function networks with particle swarms
    Liu, Y
    Zheng, Q
    Shi, ZW
    Chen, JY
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 317 - 322
  • [23] Robust Training of Radial Basis Function Neural Networks
    Kalina, Jan
    Vidnerova, Petra
    ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 113 - 124
  • [24] TRAINING RADIAL BASIS FUNCTION NETWORKS BY GENETIC ALGORITHMS
    da Mota, Juliano F.
    Siqueira, Paulo H.
    de Souza, Luzia V.
    Vitor, Adriano
    ICAART: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2012, : 373 - 379
  • [25] Training Radial Basis Function Networks with Differential Evolution
    Yu, Bing
    He, Xingshi
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 11, 2006, 11 : 157 - 160
  • [26] Quantum speedup of training radial basis function networks
    Shao, Changpeng
    Quantum Information and Computation, 2019, 19 (7-8): : 609 - 625
  • [27] Training radial basis function networks using biogeography-based optimizer
    Aljarah, Ibrahim
    Faris, Hossam
    Mirjalili, Seyedali
    Al-Madi, Nailah
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (07): : 529 - 553
  • [28] Training radial basis function networks using biogeography-based optimizer
    Ibrahim Aljarah
    Hossam Faris
    Seyedali Mirjalili
    Nailah Al-Madi
    Neural Computing and Applications, 2018, 29 : 529 - 553
  • [29] Supervised training technique for radial basis function neural networks
    Bruzzone, L
    Prieto, DF
    ELECTRONICS LETTERS, 1998, 34 (11) : 1115 - 1116
  • [30] Integrated method for constructive training of radial basis function networks
    Oliveira, ALI
    Melo, BJM
    Meira, SRL
    ELECTRONICS LETTERS, 2005, 41 (07) : 429 - 430