Composites of Central Extensions Form a Relative Semi-Abelian Category

被引:2
|
作者
Janelidze-Gray, Tamar [1 ]
机构
[1] Univ S Africa, Coll Sci Engn & Technol, Dept Math Sci, ZA-0003 Pretoria, South Africa
关键词
Relative semi-abelian category; Relative homological category; Semi-abelian category; Homological category; Barr-exact category; Central extension; Trivial extension; Regular epimorphism; Normal epimorphism; GALOIS THEORY;
D O I
10.1007/s10485-013-9354-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider trivial and central extensions, in the sense of G. Janelidze and G. M. Kelly, which are defined with respect to an adjunction between a Barr-exact category C and a Birkhoff subcategory X of C. Assuming in addition that C is a pointed Mal'tsev category with cokernels, and that X is protomodular, we prove that: (a) the class of all trivial extensions and the class of all finite composites of central extensions form relative homological category structures on C; (b) if C has finite coproducts, then the class of all finite composites of central extensions forms a relative semi-abelian category structure on C.
引用
收藏
页码:857 / 872
页数:16
相关论文
共 50 条
  • [21] Topological semi-abelian algebras
    Borceux, F
    Clementino, MM
    ADVANCES IN MATHEMATICS, 2005, 190 (02) : 425 - 453
  • [22] Butterflies in a semi-abelian context
    Abbad, O.
    Mantovani, S.
    Metere, G.
    Vitale, E. M.
    ADVANCES IN MATHEMATICS, 2013, 238 : 140 - 183
  • [23] On bornological semi-abelian algebras
    Borceux, Francis
    Clementino, Maria Manuel
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2021, 14 (01) : 181 - 222
  • [24] Points of small height on a semi-abelian variety of the form Gnm x A
    Plessis, Arnaud
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (06) : 2278 - 2296
  • [25] Semi-localizations of semi-abelian categories
    Gran, Marino
    Lack, Stephen
    JOURNAL OF ALGEBRA, 2016, 454 : 206 - 232
  • [26] SEMI-ABELIAN CATEGORIES AND ADDITIVE OBJECTS
    RAIKOV, DA
    SIBERIAN MATHEMATICAL JOURNAL, 1976, 17 (01) : 127 - 139
  • [27] Torsion subvarieties of semi-abelian varieties
    David, S
    Philippon, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (08): : 587 - 592
  • [28] A semi-abelian approach to directed homology
    Goubault E.
    Journal of Applied and Computational Topology, 2024, 8 (2) : 271 - 299
  • [29] Perverse sheaves on semi-abelian varieties
    Liu, Yongqiang
    Maxim, Laurentiu
    Wang, Botong
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [30] Diophantine approximation on semi-abelian varieties
    Rémond, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (02): : 191 - 212