Tailoring the Al distribution in secondary particles for optimizing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2

被引:12
|
作者
Du, Fanghui [1 ,2 ]
Li, Xiang [1 ,2 ]
Wu, Ling [3 ]
Hu, Die [1 ,2 ]
Zhou, Qun [1 ,2 ]
Sun, Pengpeng [1 ,2 ]
Xu, Tao [1 ,2 ]
Mei, Chengxiang [1 ,2 ]
Hao, Qi [1 ,2 ]
Fan, Zhongxu [1 ,2 ]
Zheng, Junwei [1 ,2 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Sch Iron & Steel, Suzhou 215000, Peoples R China
关键词
Nickel-rich cathode; Al distribution; Al gradient doping; Coating; Lithium-ion battery;
D O I
10.1016/j.ceramint.2021.01.161
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ni-rich materials, as one type of cathode materials for next-generation lithium-ion batteries, suffer from poor cycling stability due to severe structural degradation and surface deterioration. Lattice doping is an effective method to stabilize crystal structures, yet it has little effect on inhibiting surface side reactions. Herein, we demonstrate a strategy that can tailor the distribution of doping element Al in the entire secondary sphere in a controllable way to simultaneously stabilize the crystal structure and surface of the cathode material. The strategy takes advantage of the interdiffusion of elements at the solid-solid interface formed by aluminumcontaining species that uniformly cover the surface of the Ni0.8Co0.1Mn0.1(OH)2 precursor at a high temperature. The extent of Al doping in the materials can be properly regulated by the amount of aluminum-containing species to generate uniform doping, gradient doping, and gradient doping with a thin Al coating layer. As a result, the Al gradient-doped cathode material exhibits excellent capacity retention of 81.9% after 500 cycles at 2C, which is much higher than the capacity retention of 54.3% for the pristine counterpart.
引用
收藏
页码:12981 / 12991
页数:11
相关论文
共 50 条
  • [21] Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating
    Li, Yong-Chun
    Zhao, Wei-Min
    Xiang, Wei
    Wu, Zhen-Guo
    Yang, Zu-Guang
    Xu, Chun-Liu
    Xu, Ya-Di
    Wang, En-Hui
    Wu, Chun-Jin
    Guo, Xiao-Dong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 546 - 555
  • [22] Optimization of the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material by titanium doping
    Yang, Rui-Kai
    Wu, Zhen-Guo
    Li, Yong-Chun
    Li, Rong
    Qiu, Lang
    Wang, Dong
    Yang, Lin
    Guo, Xiao-Dong
    IONICS, 2020, 26 (07) : 3223 - 3230
  • [23] Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material
    Li, Tongxin
    Li, Donglin
    Zhang, Qingbo
    Gao, Jianhang
    Kong, Xiangze
    Fan, Xiaoyong
    Gou, Lei
    ACTA CHIMICA SINICA, 2021, 79 (05) : 679 - 684
  • [24] Influence of Atmosphere on Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Electrodes for Li-Ion Batteries
    Wang, Ran
    Wang, Jing
    Chen, Shi
    Gao, Ang
    Su, Yuefeng
    Wu, Feng
    5TH ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING (MSEE2017), 2018, 301
  • [25] Microscopic Mechanism of Influence of Doping F on Structure and Performance of LiNi0.8Co0.1Mn0.1O2
    Ren Ming-Ming
    Liu Ze-Pine
    Yuan Zhen-Luo
    Wang Yang
    Fan Guang-Xin
    Liu Bao-Zhong
    Luo Cheng-Guo
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (06) : 1046 - 1054
  • [26] Convenient Surface Treatment of LiNi0.8Co0.1Mn0.1O2 Materials Improve the Cycle Performance
    Tang, Jianbo
    Xie, Qian
    Chen, Zhishan
    Tian, Ye
    Zuo, Jianliang
    Yang, Wei
    Zheng, Wenzhi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (02)
  • [27] 水分对LiNi0.8Co0.1Mn0.1O2性能的影响
    叶茂
    杨凤玉
    卢诚
    乔敏
    电池, 2018, 48 (05) : 333 - 337
  • [28] Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method
    Zheng, Xiaobo
    Li, Xinhai
    Zhang, Bao
    Wang, Zhixing
    Guo, Huajun
    Huang, Zhenjun
    Yan, Guochun
    Wang, Ding
    Xu, Yan
    CERAMICS INTERNATIONAL, 2016, 42 (01) : 644 - 649
  • [29] Enhanced Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode for Lithium-Ion Batteries by Precursor Preoxidation
    Zhang, Congcong
    Liu, Mengmeng
    Pan, Guangjie
    Liu, Siyang
    Liu, Da
    Chen, Chunguang
    Su, Junming
    Huang, Tao
    Yu, Aishui
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (08): : 4374 - 4384
  • [30] Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering
    Jian Dong
    HuiHui He
    Dongyun Zhang
    Chengkang Chang
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 18200 - 18210