Tailoring the Al distribution in secondary particles for optimizing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2

被引:12
|
作者
Du, Fanghui [1 ,2 ]
Li, Xiang [1 ,2 ]
Wu, Ling [3 ]
Hu, Die [1 ,2 ]
Zhou, Qun [1 ,2 ]
Sun, Pengpeng [1 ,2 ]
Xu, Tao [1 ,2 ]
Mei, Chengxiang [1 ,2 ]
Hao, Qi [1 ,2 ]
Fan, Zhongxu [1 ,2 ]
Zheng, Junwei [1 ,2 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Sch Iron & Steel, Suzhou 215000, Peoples R China
关键词
Nickel-rich cathode; Al distribution; Al gradient doping; Coating; Lithium-ion battery;
D O I
10.1016/j.ceramint.2021.01.161
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ni-rich materials, as one type of cathode materials for next-generation lithium-ion batteries, suffer from poor cycling stability due to severe structural degradation and surface deterioration. Lattice doping is an effective method to stabilize crystal structures, yet it has little effect on inhibiting surface side reactions. Herein, we demonstrate a strategy that can tailor the distribution of doping element Al in the entire secondary sphere in a controllable way to simultaneously stabilize the crystal structure and surface of the cathode material. The strategy takes advantage of the interdiffusion of elements at the solid-solid interface formed by aluminumcontaining species that uniformly cover the surface of the Ni0.8Co0.1Mn0.1(OH)2 precursor at a high temperature. The extent of Al doping in the materials can be properly regulated by the amount of aluminum-containing species to generate uniform doping, gradient doping, and gradient doping with a thin Al coating layer. As a result, the Al gradient-doped cathode material exhibits excellent capacity retention of 81.9% after 500 cycles at 2C, which is much higher than the capacity retention of 54.3% for the pristine counterpart.
引用
收藏
页码:12981 / 12991
页数:11
相关论文
共 50 条
  • [1] Synthesis and Electrochemical Performance in Modified Electrolyte of Microspheres LiNi0.8Co0.1Mn0.1O2
    Ma Shi-Ping
    Cui Yong-Li
    Zhu Hong-Gang
    Zuo Wen-Qing
    Shi Yue-Li
    Zhuang Quan-Chao
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2018, 34 (07) : 1303 - 1311
  • [2] Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance
    Xiao Z.
    Hu C.
    Song L.
    Lu Y.
    Liu J.
    Zeng P.
    Huagong Xuebao/CIESC Journal, 2017, 68 (04): : 1652 - 1659
  • [3] Enhancing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes through amorphous coatings
    Dou, Lintao
    Tang, Ao
    Lin, Weiguang
    Dong, Xin
    Lu, Lu
    Shang, Chaoqun
    Zhang, Zhanhui
    Huang, Zhiliang
    Aifantis, Katerina
    Hu, Pu
    Xiao, Dongdong
    ELECTROCHIMICA ACTA, 2022, 425
  • [4] Effect of solution wash on the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials
    Zhou, Yangfan
    Hu, Ziyi
    Huang, Yuhui
    Wu, Yongjun
    Hong, Zijian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [5] Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material
    Cai H.
    Yuan A.
    Feng R.
    Deng Y.
    Tang H.
    Tan L.
    Sun R.
    Tan, Long (tgoodenough@ncu.edu.cn), 1882, Beijing University of Aeronautics and Astronautics (BUAA) (38): : 1882 - 1889
  • [6] Enhanced Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Materials by Al2O3 Coating
    Feng, Yaohua
    Xu, Hui
    Wang, Bo
    Wang, Shimin
    Ai, Ling
    Li, Shiyou
    Journal of Electrochemical Energy Conversion and Storage, 2021, 18 (03)
  • [7] Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries
    Huang, Yue
    Wang, Zhi-xing
    Li, Xin-hai
    Guo, Hua-jun
    Wang, Jie-xi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2253 - 2259
  • [8] Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 via titanium and boron co-doping
    Zhu, Fangjun
    Shi, You
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Sun, Qian
    Xue, Zhichen
    Zhang, Yinjia
    Du, Ke
    CERAMICS INTERNATIONAL, 2021, 47 (03) : 3070 - 3078
  • [9] Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification
    Jan, S. Savut
    Nurgul, S.
    Shi, Xiaoqin
    Xia, Hui
    Pang, Huan
    ELECTROCHIMICA ACTA, 2014, 149 : 86 - 93
  • [10] Improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 modified with 4-vinylbenzeneboronic acid
    Li, Ping
    Zhao, Sijia
    Zhuang, Yan
    Adkins, Jason
    Zhou, Qun
    Zheng, Junwei
    APPLIED SURFACE SCIENCE, 2018, 453 : 93 - 100