Radar target classification using improved Dempster-Shafer theory

被引:3
|
作者
Mehta, Parth [1 ]
De, Anindita [2 ]
Shashikiran, Dayalan [2 ]
Ray, Kamla Prasan [1 ]
机构
[1] Def Inst Adv Technol, Pune, Maharashtra, India
[2] Def Res & Dev Org, Bengaluru, India
来源
JOURNAL OF ENGINEERING-JOE | 2019年 / 2019卷 / 21期
关键词
uncertainty handling; inference mechanisms; fuzzy logic; radar target recognition; real-time systems; Dempster-Shafer theory; mass functions; multifunction radar; coarse classification; radar target classification;
D O I
10.1049/joe.2019.0676
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study considers the problem of coarse classification of targets using multifunction radar. Several methods are available for classification such as decision trees, Dempster-Shafer, Bayes, neural networks, etc. A different approach to assign the mass functions based on fuzzy logic in the Dempster-Shafer framework is proposed in this study. The method is evaluated for classification of different kinds of targets like aircraft, ballistic missiles, satellites, chaff and actual clouds, and unknown targets. With the proposed method, improvement in classification accuracy is observed, compared to existing mass functions. The technique is found to be computationally efficient and suitable for real-time systems.
引用
收藏
页码:7872 / 7875
页数:4
相关论文
共 50 条
  • [31] Skin Infection Detection using Dempster-Shafer Theory
    Maseleno, Andino
    Hasan, Md. Mahmud
    2012 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2012, : 1147 - 1151
  • [32] Face recognition in video using Dempster-Shafer theory
    Foucher, S
    Gagnon, L
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 545 - 548
  • [33] Toward a Dempster-Shafer theory of concepts
    Frittella, Sabine
    Manoorkar, Krishna
    Palmigiano, Alessandra
    Tzimoulis, Apostolos
    Wijnberg, Nachoem
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 125 : 14 - 25
  • [34] 40 years of Dempster-Shafer theory
    Denoeux, Thierry
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 79 : 1 - 6
  • [35] SAR target configuration recognition based on the Dempster-Shafer theory and sparse representation using a new classification criterion
    Liu, Ming
    Chen, Shichao
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (12) : 4604 - 4622
  • [36] Using Dempster-Shafer Theory in XML Information Retrieval
    Raja, F.
    Rahgozar, A.
    Oroumchian, F.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 336 - +
  • [37] Discovering user preferences using Dempster-Shafer theory
    Troiano, Luigi
    Rodriguez-Muniz, Luis J.
    Diaz, Irene
    FUZZY SETS AND SYSTEMS, 2015, 278 : 98 - 117
  • [38] Nonstandard analysis and Dempster-Shafer theory
    Roesmer, C
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2000, 15 (02) : 117 - 127
  • [39] Using the Dempster-Shafer Theory of Evidence to Rank Documents
    Jiuling Zhang**
    Tsinghua Science and Technology, 2012, 17 (03) : 241 - 247
  • [40] Unsupervised author disambiguation using Dempster-Shafer theory
    Wu, Hao
    Li, Bo
    Pei, Yijian
    He, Jun
    SCIENTOMETRICS, 2014, 101 (03) : 1955 - 1972