On a generalization of Kelly's combinatorial lemma

被引:3
|
作者
Ben Amira, Aymen [1 ]
Dammak, Jamel [1 ]
Si Kaddour, Hamza [2 ]
机构
[1] Fac Sci Sfax, Dept Math, Sfax, Tunisia
[2] Univ Lyon 1, Dept Math, ICJ, F-69622 Villeurbanne, France
关键词
Set; matrix; graph; tournament; isomorphism; INCIDENCE MATRICES; BINARY RELATIONS; ISOMORPHIC TYPES; RESTRICTIONS; TOURNAMENTS; GRAPHS; HEREDITARY; RECONSTRUCTION; HYPOMORPHY; N-1;
D O I
10.3906/mat-1302-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kelly's combinatorial lemma is a basic tool in the study of Ulam's reconstruction conjecture. A generalization in terms of a family of t-elements subsets of a v-element set was given by Pouzet. We consider a version of this generalization modulo a prime p. We give illustrations to graphs and tournaments.
引用
收藏
页码:949 / 964
页数:16
相关论文
共 50 条
  • [31] On one combinatorial lemma
    Shashkin, Yu. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (01): : 244 - 254
  • [32] On one combinatorial lemma
    Shashkin, Yu. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 : 186 - 196
  • [33] A GENERALIZATION OF ZAKALYUKIN'S LEMMA, AND SYMMETRIES OF SURFACE SINGULARITIES
    Honda, Atsufumi
    Naokawa, Kosuke
    Saji, Kentaro
    Umehara, Masaaki
    Yamada, Kotaro
    JOURNAL OF SINGULARITIES, 2022, 25 : 299 - 324
  • [34] A generalization of a lemma of Kac
    Arevalo, Carlos D. Martinez
    ARCHIV DER MATHEMATIK, 2023, 121 (01) : 99 - 107
  • [35] GENERALIZATION OF LEMMA OF NAKAYAMA
    GROLZ, W
    MATHEMATISCHE ANNALEN, 1973, 200 (03) : 185 - 187
  • [36] A Generalization of Hoffman's Lemma in Banach Spaces and Applications
    Huy, Nguyen Quang
    Tuan, Hoang Ngoc
    Yen, Nguyen Dong
    APPLIED MATHEMATICS AND OPTIMIZATION, 2025, 91 (02):
  • [37] An infinite-dimensional generalization of Zenger's lemma
    Drnovsek, Roman
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 1233 - 1238
  • [38] A Generalization of Stenger’s Lemma to Maximal Dissipative Operators
    M. A. Nudelman
    Integral Equations and Operator Theory, 2011, 70 : 301 - 305
  • [40] GENERALIZATION OF WATSONS LEMMA
    WONG, R
    WYMAN, M
    CANADIAN JOURNAL OF MATHEMATICS, 1972, 24 (02): : 185 - &