Local edge coloring of graphs

被引:0
|
作者
Deepa, P. [1 ]
Srinivasan, P. [2 ]
Sundarakannan, M. [3 ]
机构
[1] Madras Christian Coll, Dept Math SFS, Chennai, Tamil Nadu, India
[2] Amer Coll, Dept Math, Madurai, Tamil Nadu, India
[3] Sri Sivasubramaniya Nadar Coll Engn, Dept Math, Chennai 603110, Tamil Nadu, India
关键词
Coloring; edge coloring; local coloring; line graph;
D O I
10.1080/09728600.2021.1915722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. A local edge coloring of G is a proper edge coloring c:E -> N such that for each subset S of E(G) with 2 <= vertical bar S vertical bar <= 3, there exist edges e,f is an element of S such that vertical bar c(e)-c(f)vertical bar >= n(s), where n(s) is the number of copies of P-3 in the edge induced subgraph S. The maximum color assigned by a local edge coloring c to an edge of G is called the value of c and is denoted by chi(l)'(c). The local edge chromatic number of G is chi(l)'(G)=min{chi(l)'(c)}, where the minimum is taken over all local edge colorings c of G. In this article, we derive bounds and many results based on local edge coloring.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
  • [31] Adjacent strong edge coloring of graphs
    Zhang, ZF
    Liu, LZ
    Wang, JF
    APPLIED MATHEMATICS LETTERS, 2002, 15 (05) : 623 - 626
  • [32] Edge coloring nearly bipartite graphs
    Reed, B
    OPERATIONS RESEARCH LETTERS, 1999, 24 (1-2) : 11 - 14
  • [33] On edge cover coloring of join graphs
    Li, Jinbo
    Liu, Guizhen
    Liu, Bin
    ARS COMBINATORIA, 2011, 100 : 299 - 306
  • [34] Acyclic edge coloring of sparse graphs
    Wang, Yingqian
    Sheng, Ping
    DISCRETE MATHEMATICS, 2012, 312 (24) : 3561 - 3573
  • [35] Acyclic edge coloring of subcubic graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6650 - 6653
  • [36] Group twin edge coloring of graphs
    Cichacz, Sylwia
    Przybylo, Jakub
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01):
  • [37] Acyclic edge coloring of planar graphs
    Bu, Yuehua
    Jia, Qi
    Zhu, Hongguo
    Zhu, Junlei
    AIMS MATHEMATICS, 2022, 7 (06): : 10828 - 10841
  • [38] Equitable Edge Coloring of Some Graphs
    Vivik, Veninstine J.
    Girija, G.
    UTILITAS MATHEMATICA, 2015, 96 : 27 - 32
  • [39] Edge coloring of bipartite graphs with constraints
    Caragiannis, I
    Kaklamanis, C
    Persiano, P
    THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) : 361 - 399
  • [40] Edge-Coloring of Split Graphs
    de Almeida, Sheila Morais
    de Mello, Celia Picinin
    Morgana, Aurora
    ARS COMBINATORIA, 2015, 119 : 363 - 375