A Diophantine equation with the harmonic mean

被引:1
|
作者
Zhang, Yong [1 ,2 ]
Chen, Deyi [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine equation; Pell's equation; Integer solutions; Rational parametric solutions; F(X)F(Y);
D O I
10.1007/s10998-019-00302-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f is an element of Q[x] be a polynomial without multiple roots and degf >= 2. We give conditions for f=x2+bx+cunder which the Diophantine equation 2f(x)f(y)=f(z)(f(x)+f(y))\ has infinitely many nontrivial integer solutions and prove that this equation has infinitely many rational parametric solutions for f=x2+bx with nonzero integer b. Moreover, we show that it has a rational parametric solution for infinitely many cubic polynomials.
引用
收藏
页码:138 / 144
页数:7
相关论文
共 50 条
  • [31] A binomial diophantine equation
    DeWeger, BMM
    QUARTERLY JOURNAL OF MATHEMATICS, 1996, 47 (186): : 221 - 231
  • [32] On the Diophantine equation nx
    Viriyapong, Nongluk
    Viriyapong, Chokchai
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (04): : 1639 - 1642
  • [33] On the Diophantine equation of the form
    Prugsapitak, Supawadee
    Sangjan, Phitchayawee
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2025, 20 (01): : 187 - 190
  • [34] On a particular Diophantine equation
    MacHale, Des
    MATHEMATICAL GAZETTE, 2005, 89 (515): : 246 - 247
  • [35] AN INTERESTING DIOPHANTINE EQUATION
    Toma, Marina
    JOURNAL OF SCIENCE AND ARTS, 2011, (04): : 459 - 461
  • [36] On the Diophantine equation ax
    Viriyapong, Chokchai
    Viriyapong, Nongluk
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (03): : 525 - 527
  • [37] DIOPHANTINE EQUATION IN CALCULUS
    MARSTON, HM
    LARSON, LC
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (07): : 795 - &
  • [38] A RADICAL DIOPHANTINE EQUATION
    NEWMAN, M
    JOURNAL OF NUMBER THEORY, 1981, 13 (04) : 495 - 498
  • [39] AN EXPONENTIAL DIOPHANTINE EQUATION
    ALEX, LJ
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (01): : 63 - 63
  • [40] On a Diophantine Equation of Stroeker
    Luca, Florian
    Stanica, Pantelimon
    Togbe, Alain
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (02) : 201 - 208