Landau and dynamical instabilities of Bose-Einstein condensates in a Kronig-Penney potential

被引:0
|
作者
Danshita, Ippei
Tsuchiya, Shunji [1 ]
机构
[1] Univ Trent, CNR, INFM, BEC Ctr, I-38050 Povo, Italy
[2] Waseda Univ, Dept Phys, Tokyo 1698555, Japan
[3] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[4] Univ Trent, Dipartimento Fis, I-38050 Povo, Italy
关键词
D O I
10.1007/s10909-007-9394-x
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study elementary excitations of Bose-Einstein condensates in a one-dimensional periodic potential and discuss the stability of superfluid flow based on the Kronig-Penney model. We analytically solve the Bogoliubov equations and calculate the excitation spectrum. The Landau and dynamical instabilities occur in the first condensate band when the superfluid velocity exceeds certain critical values as in a sinusoidal potential. It is found that the onset of the Landau instability coincides with the point where the perfect transmission of low-energy excitations is forbidden, while the dynamical instability occurs when the effective mass is negative. The condensate band has a swallow-tail structure when the periodic potential is shallow compared to the mean-field energy. We find that the upper side of a swallow-tail is dynamically unstable although the excitation spectrum has a linear dispersion reflecting the positive effective mass.
引用
收藏
页码:337 / 343
页数:7
相关论文
共 50 条
  • [21] Generation of directional, coherent matter beams through dynamical instabilities in Bose-Einstein condensates
    Dennis, Graham R.
    Johnsson, Mattias T.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [22] Anisotropic instabilities in trapped spinor Bose-Einstein condensates
    Baraban, M.
    Song, H. F.
    Girvin, S. M.
    Glazman, L. I.
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [23] Quantum effects on dynamics of instabilities in Bose-Einstein condensates
    Yurovsky, VA
    PHYSICAL REVIEW A, 2002, 65 (03) : 11
  • [24] Dynamical and energetic instabilities of F=2 spinor Bose-Einstein condensates in an optical lattice
    Wang, Deng-Shan
    Shi, Yu-Ren
    Feng, Wen-Xing
    Wen, Lin
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 351 : 30 - 41
  • [25] Dynamical quantum noise in trapped Bose-Einstein condensates
    Steel, MJ
    Olsen, MK
    Plimak, LI
    Drummond, PD
    Tan, SM
    Collett, MJ
    Walls, DF
    Graham, R
    PHYSICAL REVIEW A, 1998, 58 (06): : 4824 - 4835
  • [27] Dynamical instabilities of Bose-Einstein condensates at the band edge in one-dimensional optical lattices
    Ferris, Andrew J.
    Davis, Matthew J.
    Geursen, Reece W.
    Blakie, P. Blair
    Wilson, Andrew C.
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [28] Bose-Einstein condensates in the lowest Landau Level: Hamiltonian dynamics
    Nier, F.
    REVIEWS IN MATHEMATICAL PHYSICS, 2007, 19 (01) : 101 - 130
  • [29] Bose-Einstein condensates
    Kadomtsev, BB
    Kadomtsev, MB
    USPEKHI FIZICHESKIKH NAUK, 1997, 167 (06): : 649 - 664
  • [30] Logarithmic Bose-Einstein condensates with harmonic potential
    Ardila, Alex H.
    Cely, Liliana
    Squassina, Marco
    ASYMPTOTIC ANALYSIS, 2020, 116 (01) : 27 - 40