Symplectic scheme for the Schrodinger equation with fractional Laplacian

被引:35
|
作者
Xiao, Aiguo [1 ,2 ]
Wang, Junjie [1 ,2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Puer Univ, Sch Math & Stat, Puer 665000, Yunnan, Peoples R China
关键词
Space fractional Schrodinger equation; Hamiltonian system; Conservation law; Fourth-order central difference scheme; Symplectic scheme; CONSERVATIVE DIFFERENCE SCHEME; NUMERICAL-METHODS; DIFFUSION EQUATION;
D O I
10.1016/j.apnum.2019.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the symplectic scheme is presented for solving the space fractional Schrodinger equation (SFSE) with one dimension. First, the symplectic conservation laws are investigated for space semi-discretization systems of the SFSE based on the existing second-order central difference scheme and the existing fourth-order compact scheme. Then, a fourth-order central difference scheme is developed in space discretization, and the resulting semi-discretization system is shown to be a finite dimension Hamiltonian system of ordinary differential equations. Moreover, we get the full discretization scheme for the Hamiltonian system by symplectic midpoint scheme in time direction. In particular, the space semi-discretization and the full discretization are shown to preserve some properties of the SFSE. At last, numerical experiments are given to verify the efficiency of the scheme, and show that these symplectic difference schemes can be applied to long time simulation for one-dimensional SFSEs. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:469 / 487
页数:19
相关论文
共 50 条
  • [21] Symplectic integrators for the numerical solution of the Schrodinger equation
    Kalogiratou, Z
    Monovasilis, T
    Simos, TE
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) : 83 - 92
  • [22] Symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    Simos, T. E.
    COMPUTATIONAL MATERIALS SCIENCE, 2007, 38 (03) : 526 - 532
  • [23] SYMPLECTIC INTEGRATORS FOR THE MULTICHANNEL SCHRODINGER-EQUATION
    MANOLOPOULOS, DE
    GRAY, SK
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (23): : 9214 - 9227
  • [24] Symplectic Pseudospectral Time-Domain Scheme for Solving Time-Dependent Schrodinger Equation
    Shen, Jing
    Sha, Wei E. I.
    Kuang, Xiaojing
    Hu, Jinhua
    Huang, Zhixiang
    Wu, Xianliang
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2018, 66 : 109 - 118
  • [25] High-oder symplectic FDTD scheme for solving time-dependent Schrodinger equation
    Shen Jing
    Wei, Sha E., I
    Huang Zhi-Xiang
    Chen Ming-Sheng
    Wu Xian-Liang
    ACTA PHYSICA SINICA, 2012, 61 (19)
  • [26] High-order symplectic FDTD scheme for solving a time-dependent Schrodinger equation
    Shen, Jing
    Sha, Wei E. I.
    Huang, Zhixiang
    Chen, Mingsheng
    Wu, Xianliang
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) : 480 - 492
  • [27] Standing waves of nonlinear fractional p-Laplacian Schrodinger equation involving logarithmic nonlinearity
    Zhang, Lihong
    Hou, Wenwen
    APPLIED MATHEMATICS LETTERS, 2020, 102 (102)
  • [28] Time fractional Schrodinger equation
    Naber, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) : 3339 - 3352
  • [29] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [30] Multidimensional Fractional Schrodinger equation
    Rodrigues, M. M.
    Vieira, N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 798 - 804