Low tension graphene drums for electromechanical pressure sensing

被引:20
|
作者
Patel, Raj N. [1 ,2 ]
Mathew, John P. [1 ]
Borah, Abhinandan [1 ]
Deshmukh, Mandar M. [1 ]
机构
[1] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[2] Birla Inst Technol & Sci Pilani, Dept Phys, KK Birla Goa Campus, Pilani 403726, Goa, India
来源
2D MATERIALS | 2016年 / 3卷 / 01期
关键词
graphene; drum resonator; pressure sensor;
D O I
10.1088/2053-1583/3/1/011003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a process to fabricate electromechanical pressure sensors using multilayer graphene in a sealed drum geometry. The drum resonators are fabricated on insulating sapphire substrates with a local back gate for direct radio frequency (rf) actuation and detection of the mechanical modes. Using this scheme, we show the detection and electrostatic tuning of multiple resonant modes of the membrane up to 200 MHz. The geometry of the device also helps in attaining low tensile stress in the membrane, thereby giving high gate tunability (similar to 1 MHz/V) of the resonator modes. Westudy the resonant frequency shifts in the presence of helium gas and demonstrate a sensing capability of 1 Torr pressure in a cryogenic environment.
引用
收藏
页数:6
相关论文
共 50 条
  • [42] Dynamics of wet particles in rotating drums: Effect of liquid surface tension
    Liu, P. Y.
    Yang, R. Y.
    Yu, A. B.
    PHYSICS OF FLUIDS, 2011, 23 (01)
  • [43] Electromechanical Properties of PVDF-Based Polymers Reinforced with Nanocarbonaceous Fillers for Pressure Sensing Applications
    Vicente, Javier
    Costa, P.
    Lanceros-Mendez, S.
    Manuel Abete, Jose
    Iturrospe, Aitzol
    MATERIALS, 2019, 12 (21)
  • [44] Electromechanical resonators from graphene sheets
    Bunch, J. Scott
    van der Zande, Arend M.
    Verbridge, Scott S.
    Frank, Ian W.
    Tanenbaum, David M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    SCIENCE, 2007, 315 (5811) : 490 - 493
  • [45] Theory of electromechanical coupling in dynamical graphene
    Trif, Mircea
    Upadhyaya, Pramey
    Tserkovnyak, Yaroslav
    PHYSICAL REVIEW B, 2013, 88 (24)
  • [46] Normal-Tension Glaucoma and Low Cerebrospinal Fluid Pressure
    Yusuf, Imran H.
    Ratnarajan, Gokularaj
    Kerr, Richard S.
    Salmon, John F.
    JOURNAL OF GLAUCOMA, 2017, 26 (03) : E133 - E134
  • [47] Graphene Electromechanical Water Sensor: The Wetristor
    Meireles, Leonel M.
    Neto, Eliel G. S.
    Ferrari, Gustavo A.
    Neves, Paulo A. A.
    Gadelha, Andrei C.
    Silvestre, Ive
    Taniguchi, Takashi
    Watanabe, Kenji
    Chacham, Helio
    Neves, Bernardo R. A.
    Campos, Leonardo C.
    Lacerda, Rodrigo C.
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (02)
  • [48] Graphene Foam Developed with a Novel Two-Step Technique for Low and High Strains and Pressure-Sensing Applications
    Samad, Yarjan Abdul
    Li, Yuanqing
    Schiffer, Andreas
    Alhassan, Saeed M.
    Liao, Kin
    SMALL, 2015, 11 (20) : 2380 - 2385
  • [49] Electromechanical properties of suspended graphene nanoribbons
    Hod, Oded
    Scuseria, Gustavo E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [50] Reduced graphene oxide and graphene composite materials for improved gas sensing at low temperature
    Zoepfl, Alexander
    Lemberger, Michael-Maximilian
    Koenig, Matthias
    Ruhl, Guenther
    Matysik, Frank-Michael
    Hirsch, Thomas
    FARADAY DISCUSSIONS, 2014, 173 : 403 - 414