Solving an eigenproblem with analyticity of the generating function

被引:0
|
作者
Kim, U-Rae [1 ]
Jung, Dong-Won [1 ]
Kim, Dohyun [1 ]
Lee, Jungil [1 ]
Yu, Chaehyun [1 ]
机构
[1] Korea Univ, Dept Phys, KPOP Collaborat, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Generating function; Analyticity; Eigenproblem; Normal modes;
D O I
10.1007/s40042-021-00201-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generating-function representation of a vector defined in either Euclidean or Hilbert space with arbitrary dimensions. The generating function is constructed as a power series in a complex variable whose coefficients are the components of a vector. As an application, we employ the generating-function formalism to solve the eigenproblem of a vibrating string loaded with identical beads. The corresponding generating function is an entire function. The requirement of the analyticity of the generating function determines the eigenspectrum all at once. Every component of the eigenvector of the normal mode can be easily extracted from the generating function by making use of the Schlafli integral. This is a unique pedagogical example with which students can have a practical contact with the generating function, contour integration, and normal modes of classical mechanics at the same time. Our formalism can be applied to a physical system involving any eigenvalue problem, especially one having many components, including infinite-dimensional eigenstates.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 50 条
  • [31] CHANNEL-SPIN AND ANALYTICITY OF SPECTRAL FUNCTION
    MOHAN, G
    NUOVO CIMENTO, 1962, 24 (02): : 350 - +
  • [32] A GENERATING FUNCTION
    GUHA, DK
    KULLBACK, S
    SIAM REVIEW, 1968, 10 (04) : 455 - &
  • [33] A GENERATING FUNCTION
    MANOCHA, HL
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 627 - &
  • [34] Genetic algorithm and universal generating function technique for solving problems of power system reliability optimization
    Levitin, G
    Lisnianski, A
    Ben Haim, H
    Elmakis, D
    DRPT2000: INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES, PROCEEDINGS, 2000, : 582 - 586
  • [35] Generating Function Approach to the Derivation of Higher-Order Iterative Methods for Solving Nonlinear Equations
    Zhanlav, Tugal
    Chuluunbaatar, Ochbadrakh
    Ulziibayar, Vandandoo
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [36] Generating and Solving Symbolic Parity Games
    Kant, Gijs
    van de Pol, Jaco
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (159): : 2 - 14
  • [37] Parallel spectral division using the matrix sign function for the generalized eigenproblem
    Huss-Lederman, S
    Quintana-Ortí, ES
    Sun, XB
    Wu, YJY
    INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 2000, 11 (01): : 1 - 14
  • [38] ON AN ALGORITHM FOR SOLVING THE INCOMPLETE EIGENPROBLEM IN VIBRATION ANALYSIS OF COMPLEX FUSELAGE-TYPE STRUCTURES.
    Borisov, V.R.
    Shakirzyanov, R.A.
    Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 1982, 25 (04): : 11 - 15
  • [39] Analyticity, renormalization, and evolution of the soft-quark function
    Bodwin, Geoffrey T.
    Ee, June-Haak
    Lee, Jungil
    Wang, Xiang-Peng
    PHYSICAL REVIEW D, 2021, 104 (01)
  • [40] Analyticity of the susceptibility function for unimodal Markovian maps of the interval
    Jiang, YP
    Ruelle, D
    NONLINEARITY, 2005, 18 (06) : 2447 - 2453