Solving an eigenproblem with analyticity of the generating function

被引:0
|
作者
Kim, U-Rae [1 ]
Jung, Dong-Won [1 ]
Kim, Dohyun [1 ]
Lee, Jungil [1 ]
Yu, Chaehyun [1 ]
机构
[1] Korea Univ, Dept Phys, KPOP Collaborat, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Generating function; Analyticity; Eigenproblem; Normal modes;
D O I
10.1007/s40042-021-00201-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generating-function representation of a vector defined in either Euclidean or Hilbert space with arbitrary dimensions. The generating function is constructed as a power series in a complex variable whose coefficients are the components of a vector. As an application, we employ the generating-function formalism to solve the eigenproblem of a vibrating string loaded with identical beads. The corresponding generating function is an entire function. The requirement of the analyticity of the generating function determines the eigenspectrum all at once. Every component of the eigenvector of the normal mode can be easily extracted from the generating function by making use of the Schlafli integral. This is a unique pedagogical example with which students can have a practical contact with the generating function, contour integration, and normal modes of classical mechanics at the same time. Our formalism can be applied to a physical system involving any eigenvalue problem, especially one having many components, including infinite-dimensional eigenstates.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 50 条
  • [1] Solving an eigenproblem with analyticity of the generating function
    U-Rae Kim
    Dong-Won Jung
    Dohyun Kim
    Jungil Lee
    Chaehyun Yu
    Journal of the Korean Physical Society, 2021, 79 : 113 - 124
  • [2] An Efficient Algorithm for Solving Eigenproblem
    Zhang, Huirong
    Cao, Jianwen
    PROCEEDINGS OF THIRTEENTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, (DCABES 2014), 2014, : 122 - 126
  • [3] Solving eigenproblem by duality transform
    Li, Shi-Lin
    Chen, Yu-Jie
    Liu, Yuan -Yuan
    Li, Wen-Du
    Dai, Wu-Sheng
    ANNALS OF PHYSICS, 2022, 443
  • [4] An Algorithm for Solving Inverse Eigenproblem of Generalized
    Sun Xiao-ying
    Li Zhi-bin
    Zhao Xin-xin
    ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 84 - 87
  • [5] Critical strings and analyticity of the ζ function analyticity
    Martinez-y-Romero, R. P.
    Range Orduna, Macbeth Baruch
    REVISTA MEXICANA DE FISICA E, 2010, 56 (01): : 75 - 82
  • [6] THE LAGUERRE ITERATION IN SOLVING THE SYMMETRICAL TRIDIAGONAL EIGENPROBLEM, REVISITED
    LI, TY
    ZENG, ZG
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (05): : 1145 - 1173
  • [7] Parameter Estimation by Solving Polynomial Eigenproblem: A Synchronous Machine Example
    Zivanovic, Rastko
    2013 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2013,
  • [8] Solving the Surface-Wave Eigenproblem with Chebyshev Spectral Collocation
    Denolle, Marine A.
    Dunham, Eric M.
    Beroza, Gregory C.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2012, 102 (03) : 1214 - 1223
  • [9] CONVERGENT JACOBI METHOD FOR SOLVING EIGENPROBLEM OF ARBITRARY REAL MATRICES
    VESELIC, K
    NUMERISCHE MATHEMATIK, 1976, 25 (02) : 179 - 184
  • [10] Solving Conformable Gegenbauer Differential Equation and Exploring Its Generating Function
    Mohamed Ghaleb Al-Masaeed
    Eqab M. Rabei
    Sami I. Muslih
    Dumitru Baleanu
    International Journal of Applied and Computational Mathematics, 2024, 10 (6)