Suborbital graphs of a extended congruence subgroup by Fricke involution

被引:0
|
作者
Besenk, Murat [1 ]
机构
[1] Karadeniz Tech Univ, Dept Math, TR-61080 Trabzon, Turkey
来源
ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015) | 2015年 / 1676卷
关键词
Modular group; Suborbital graph; Circuit; Monster group; Fricke involution;
D O I
10.1063/1.4930487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and let Gamma(0) (p) denote the usual subgroup of Gamma = PSL2(Z) = SL2(Z)/{+/- I}, consisting of all the matrices with lower left entry divisible by p. Then the attached Fricke group is given by Gamma(0)(p) boolean OR Gamma(0)(p)W-p, W-p := 1/root p{(0)(1)(P)(0)). The Fricke group acts on the upper half-plane. Its action on Q boolean OR {infinity} is transitive but imprimitive. We study the action of Fricke group on the projective line Q boolean OR {infinity} by using suborbital graphs. These are directed graphs with vertex-set Q boolean OR {infinity}, their edge-sets being the orbits of the group on the cartesian square [Q boolean OR {infinity}](2).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] SQUARE CONGRUENCE GRAPHS
    Kumar, Janardhanan Suresh
    Nair, Sarika M.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 937 - 941
  • [42] The congruence subgroup problem for branch groups
    Laurent Bartholdi
    Olivier Siegenthaler
    Pavel Zalesskii
    Israel Journal of Mathematics, 2012, 187 : 419 - 450
  • [43] ON THE CONGRUENCE SUBGROUP PROBLEM .2.
    RAGHUNATHAN, MS
    INVENTIONES MATHEMATICAE, 1986, 85 (01) : 73 - 117
  • [44] The congruence subgroup problem for branch groups
    Bartholdi, Laurent
    Siegenthaler, Olivier
    Zalesskii, Pavel
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 187 (01) : 419 - 450
  • [45] A Topological Realization of the Congruence Subgroup Kernel
    Scherk, John
    GEOMETRY, ALGEBRA, NUMBER THEORY, AND THEIR INFORMATION TECHNOLOGY APPLICATIONS, 2018, 251 : 411 - 417
  • [46] ON THE CONGRUENCE SUBGROUP PROBLEM FOR BRANCH GROUPS
    Garrido, Alejandra
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 216 (01) : 1 - 13
  • [47] On the congruence subgroup problem for branch groups
    Alejandra Garrido
    Israel Journal of Mathematics, 2016, 216 : 1 - 13
  • [49] Suborbital Graphs for a Non-Transitive Action of the Normalizer
    Besenk, Murat
    Guler, Bahadir Ozgur
    Buyukkaya, Abdurrahman
    FILOMAT, 2019, 33 (02) : 385 - 392
  • [50] Chromatic Numbers of Suborbital Graphs for Some Hecke Groups
    Khangtragool, Woratham
    Chaichana, Khuanchanok
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 725 - 738