Suborbital graphs of a extended congruence subgroup by Fricke involution

被引:0
|
作者
Besenk, Murat [1 ]
机构
[1] Karadeniz Tech Univ, Dept Math, TR-61080 Trabzon, Turkey
来源
ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015) | 2015年 / 1676卷
关键词
Modular group; Suborbital graph; Circuit; Monster group; Fricke involution;
D O I
10.1063/1.4930487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and let Gamma(0) (p) denote the usual subgroup of Gamma = PSL2(Z) = SL2(Z)/{+/- I}, consisting of all the matrices with lower left entry divisible by p. Then the attached Fricke group is given by Gamma(0)(p) boolean OR Gamma(0)(p)W-p, W-p := 1/root p{(0)(1)(P)(0)). The Fricke group acts on the upper half-plane. Its action on Q boolean OR {infinity} is transitive but imprimitive. We study the action of Fricke group on the projective line Q boolean OR {infinity} by using suborbital graphs. These are directed graphs with vertex-set Q boolean OR {infinity}, their edge-sets being the orbits of the group on the cartesian square [Q boolean OR {infinity}](2).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Suborbital graphs of the congruence subgroup Γ0(N)
    Jaipong, Pradthana
    Promduang, Wanchalerm
    Chaichana, Khuanchanok
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (01): : 181 - 192
  • [2] More Fibonacci Numbers Arising from the Suborbital Graphs for the Congruence Subgroup Γ0(n/h)
    Ozturk, Seda
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [3] On congruence equations arising from suborbital graphs
    Guler, Bahadir Ozgur
    Besenk, Murat
    Kader, Serkan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2396 - 2404
  • [4] Solutions to some congruence equations via suborbital graphs
    Guler, Bahadir Ozgur
    Kor, Tuncay
    Sanli, Zeynep
    SPRINGERPLUS, 2016, 5
  • [5] SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP OF THE NORMALIZER OF Γ0 (m)
    Kader, S.
    Guler, B. O.
    Deger, A. H.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2010, 34 (A4): : 305 - 312
  • [6] Suborbital Graphs for a Special Subgroup of the SL(3, Z)
    Besenk, Murat
    FILOMAT, 2016, 30 (03) : 593 - 602
  • [7] On conjugacy of elliptic elements and circuits in suborbital graphs of congruence subgroups
    Kader, Serkan
    Guler, Bahadir Ozgur
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2011, 38 (2A): : 43 - 53
  • [8] Generalized classes of suborbital graphs for the congruence subgroups of the modular group
    Jaipong, Pradthana
    Tapanyo, Wanchai
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (01): : 20 - 36
  • [9] A Generalization of the Suborbital Graphs Generating Fibonacci Numbers for the Subgroup Γ3
    Ozturk, Seda
    FILOMAT, 2020, 34 (02) : 631 - 638
  • [10] On Suborbital Graphs for the Extended Modular Group (Γ)over-cap
    Kader, Serkan
    Guler, Bahadir Ozgur
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1813 - 1825