Stability analysis of π-kinks in a 0-π Josephson junction

被引:15
|
作者
Derks, G. [1 ]
Doelman, A.
van Gils, S. A.
Susanto, H.
机构
[1] Univ Surrey, Dept Math, Surrey GU2 7XH, England
[2] Ctr Math & Comp Sci CWI, Dept Modelling Anal & Simulat, NL-1098 SJ Amsterdam, Netherlands
[3] Univ Amsterdam, Fac Sci, Korteweg de Vries Inst, NL-1018 TV Amsterdam, Netherlands
[4] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[5] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
关键词
0-pi Josephson junction; 0-pi sine-Gordon equation; semifluxon; pi-kink;
D O I
10.1137/060657984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a spatially nonautonomous discrete sine-Gordon equation with constant forcing and its continuum limit(s) to model a 0-pi Josephson junction with an applied bias current. The continuum limits correspond to the strong coupling limit of the discrete system. The nonautonomous character is due to the presence of a discontinuity point, namely, a jump of pi in the sine-Gordon phase. The continuum model admits static solitary waves which are called pi-kinks and are attached to the discontinuity point. For small forcing, there are three types of pi-kinks. We show that one of the kinks is stable and the others are unstable. There is a critical value of the forcing beyond which all static pi- kinks fail to exist. Up to this value, the (in) stability of the pi-kinks can be established analytically in the strong coupling limits. Applying a forcing above the critical value causes the nucleation of 2 pi-kinks and -antikinks. Besides a pi- kink, the unforced system also admits a static 3 pi-kink. This state is unstable in the continuum models. By combining analytical and numerical methods in the discrete model, it is shown that the stable pi-kink remains stable and that the unstable pi-kinks cannot be stabilized by decreasing the coupling. The 3 pi- kink does become stable in the discrete model when the coupling is sufficiently weak.
引用
收藏
页码:99 / 141
页数:43
相关论文
共 50 条
  • [31] Localized mode interactions in 0-π Josephson junctions
    Susanto, Hadi
    Derks, Gianne
    PHYSICAL REVIEW B, 2010, 82 (13)
  • [32] 0-π Josephson tunnel junctions with ferromagnetic barrier
    Weides, M.
    Kemmler, M.
    Kohlstedt, H.
    Waser, R.
    Koelle, D.
    Kleiner, R.
    Goldobin, E.
    PHYSICAL REVIEW LETTERS, 2006, 97 (24)
  • [33] Observation of 0-π transition in SIsFS Josephson junctions
    Ruppelt, N.
    Sickinger, H.
    Menditto, R.
    Goldobin, E.
    Koelle, D.
    Kleiner, R.
    Vavra, O.
    Kohlstedt, H.
    APPLIED PHYSICS LETTERS, 2015, 106 (02)
  • [34] Tunable ±φ, φ0, and φ0 ± φ Josephson junction
    Goldobin, E.
    Koelle, D.
    Kleiner, R.
    PHYSICAL REVIEW B, 2015, 91 (21)
  • [35] Fluxon-semifluxon interaction in an annular long Josephson 0-π junction -: art. no. 094520
    Goldobin, E
    Stefanakis, N
    Koelle, D
    Kleiner, R
    PHYSICAL REVIEW B, 2004, 70 (09) : 094520 - 1
  • [36] Stability analysis of static solutions in a Josephson junction
    Caputo, JG
    Flytzanis, N
    Gaididei, Y
    Stefanakis, N
    Vavalis, E
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2000, 13 (04): : 423 - 438
  • [37] Controllable Josephson 0-π Junction Based on a Four-Layer Ferromagnetic-Superconductor System (FSFS)
    Borisova, N.
    Tumanov, V. A.
    Proshin, Yu N.
    PHYSICS OF METALS AND METALLOGRAPHY, 2020, 121 (05): : 434 - 438
  • [38] θ0 thermal Josephson junction
    Silaev, M. A.
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [39] On cohomological C 0-(in)stability
    Kocsard, Alejandro
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 489 - 495
  • [40] Static and dynamic properties of 0, π, and 0-π ferromagnetic Josephson tunnel junctions
    Pfeiffer, J.
    Kemmler, M.
    Koelle, D.
    Kleiner, R.
    Goldobin, E.
    Weides, M.
    Feofanov, A. K.
    Lisenfeld, J.
    Ustinov, A. V.
    PHYSICAL REVIEW B, 2008, 77 (21):