Projectively equivalent Finsler metrics on surfaces of negative Euler characteristic

被引:0
|
作者
Lang, Julius [1 ]
机构
[1] Friedrich Schiller Univ Jena, Fak Math & Informat, Ernst Abbe Pl 2, D-07743 Jena, Germany
关键词
Finsler metric; projective equivalence; integrable Hamiltonians; topological entropy; geodesic flow; ENTROPY;
D O I
10.1142/S1793525320500491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that on a surface of negative Euler characteristic, two real-analytic Finsler metrics have the same unparametrized oriented geodesics, if and only if they differ by a scaling constant and addition of a closed 1-form.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条