Projectively equivalent Finsler metrics on surfaces of negative Euler characteristic

被引:0
|
作者
Lang, Julius [1 ]
机构
[1] Friedrich Schiller Univ Jena, Fak Math & Informat, Ernst Abbe Pl 2, D-07743 Jena, Germany
关键词
Finsler metric; projective equivalence; integrable Hamiltonians; topological entropy; geodesic flow; ENTROPY;
D O I
10.1142/S1793525320500491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that on a surface of negative Euler characteristic, two real-analytic Finsler metrics have the same unparametrized oriented geodesics, if and only if they differ by a scaling constant and addition of a closed 1-form.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条
  • [1] Finsler structures on surfaces with negative Euler characteristic
    Paternain, GP
    HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (03): : 421 - 426
  • [2] ON A CLASS OF PROJECTIVELY FLAT FINSLER METRICS OF NEGATIVE CONSTANT FLAG CURVATURE
    Mo, Xiaohuan
    Zhu, Hongmei
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (08)
  • [3] Projectively related complex Finsler metrics
    Aldea, Nicoleta
    Munteanu, Gheorghe
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2178 - 2187
  • [4] On a class of projectively flat Finsler metrics
    Xia, Qiaoling
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 44 : 1 - 16
  • [5] On a class of projectively flat (α, β)-Finsler metrics
    Binh, Tran Quoc
    Cheng, Xinyue
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 73 (3-4): : 391 - 400
  • [6] On Homogeneous Projectively Flat Finsler Metrics
    Tayebi, A.
    Najafi, B.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [7] A Class of Projectively Flat Finsler Metrics
    Weidong SONG
    Jingyong ZHU
    JournalofMathematicalResearchwithApplications, 2013, 33 (06) : 737 - 744
  • [8] A Class of Projectively Flat Finsler Metrics
    Liu, Huaifu
    Mo, Xiaohuan
    Zhu, Ling
    RESULTS IN MATHEMATICS, 2024, 79 (06)
  • [9] Projectively equivalent metrics on the torus
    Matveev, VS
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 20 (03) : 251 - 265
  • [10] On cylindrical symmetric projectively flat Finsler metrics
    Solorzano, Newton
    Leon, Victor
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186