Visualization and clustering of categorical data with probabilistic self-organizing map

被引:3
|
作者
Lebbah, Mustapha [2 ]
Benabdeslem, Khalid [1 ]
机构
[1] Univ Lyon 1, EA4125, LIESP, F-69622 Lyon, France
[2] Univ Paris 13, LIPN, UMR 7030, CNRS, F-93430 Villetaneuse, France
来源
NEURAL COMPUTING & APPLICATIONS | 2010年 / 19卷 / 03期
关键词
Probabilistic self-organizing map; Categorical variables; Visualization; EM algorithm; MODEL; BERNOULLI;
D O I
10.1007/s00521-009-0299-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a self-organizing map dedicated to clustering, analysis and visualization of categorical data. Usually, when dealing with categorical data, topological maps use an encoding stage: categorical data are changed into numerical vectors and traditional numerical algorithms (SOM) are run. In the present paper, we propose a novel probabilistic formalism of Kohonen map dedicated to categorical data where neurons are represented by probability tables. We do not need to use any coding to encode variables. We evaluate the effectiveness of our model in four examples using real data. Our experiments show that our model provides a good quality of results when dealing with categorical data.
引用
收藏
页码:393 / 404
页数:12
相关论文
共 50 条
  • [31] Visualization and data mining of Pareto solutions using self-organizing map
    Obayashi, S
    Sasaki, D
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2003, 2632 : 796 - 809
  • [32] Microarray Data Clustering and Visualization Tool Using Self-Organizing Maps
    Marasigan, Zach Andrei
    Dionisio, Abigaile
    Solano, Geoffrey
    2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS (IISA), 2015,
  • [33] Clustering method using self-organizing map
    Endo, M
    Ueno, M
    Tanabe, T
    Yamamoto, M
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 261 - 270
  • [34] A new approach for data clustering and visualization using self-organizing maps
    Shieh, Shu-Ling
    Liao, I-En
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (15) : 11924 - 11933
  • [35] Reliable hierarchical clustering with the self-organizing map
    Samsonova, EV
    Bäck, T
    Kok, JN
    IJzerman, AP
    ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 385 - 396
  • [36] Clustering method using self-organizing map
    Endo, Masahiro
    Ueno, Masahiro
    Tanabe, Takaya
    Yamamoto, Manabu
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 261 - 270
  • [37] Clustering writing styles with a Self-Organizing Map
    Vuori, V
    EIGHTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION: PROCEEDINGS, 2002, : 345 - 350
  • [38] Self-organizing map for clustering in the graph domain
    Günter, S
    Bunke, H
    PATTERN RECOGNITION LETTERS, 2002, 23 (04) : 405 - 417
  • [39] Smoothed self-organizing map for robust clustering
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    INFORMATION SCIENCES, 2020, 512 : 381 - 401
  • [40] An extension of self-organizing maps to categorical data
    Chen, N
    Marques, NC
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3808 : 304 - 313