Modes decomposition forecasting approach for ultra-short-term wind speed

被引:72
|
作者
Tian, Zhongda [1 ]
机构
[1] Shenyang Univ Technol, Coll Artificial Intelligence, Shenyang 110870, Peoples R China
关键词
Ultra-short-term wind speed; Forecasting; Variational mode decomposition; Weighted combination model; Improved particle swarm optimization algorithm; SINGULAR SPECTRUM ANALYSIS; EXTREME LEARNING-MACHINE; RECURRENT NEURAL-NETWORKS; SUPPORT VECTOR MACHINE; ECHO STATE NETWORK; GAUSSIAN PROCESS; HYBRID APPROACH; MEMORY NETWORK; LSTM NETWORK; PREDICTION;
D O I
10.1016/j.asoc.2021.107303
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate forecasting of ultra-short-term wind speed is of great significance in theory and practice. This paper proposes a modes decomposition forecasting approach based on adaptive variational mode decomposition and weighted combination models for ultra-short-term wind speed. First, an adaptive variational mode decomposition algorithm is used for decomposing the original ultra-short-term wind speed time series into several modal components. Second, auto regressive integrated moving average, support vector machine and the improved long short-term memory are determined as forecasting models of different components by Hurst exponent analysis. Then, an improved particle swarm optimization algorithm is proposed to optimize the weight coefficient of each forecasting model. Finally, the final forecasted value is obtained by multiplying the forecasted value of each sub-forecasting model by their respective weight coefficient. Four groups of measured ultra-short-term wind speed data with 5-minute, 10-minute, 20-minute and 30-minute sampling periods are taken as the research object. Compared with other single or combination forecasting models, the proposed forecasting approach has higher prediction accuracy and more promising prediction performance for ultra-short-term wind speed. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Optimal Component IGSCV-SVR Ensemble Model Improved by VMD for Ultra-short-term Wind Speed Forecasting
    Ye, Yu
    Che, Jinxing
    Wang, Heping
    ENGINEERING LETTERS, 2022, 30 (03) : 1166 - 1175
  • [42] Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty
    Liu, Lei
    Liu, Jicheng
    Ye, Yu
    Liu, Hui
    Chen, Kun
    Li, Dong
    Dong, Xue
    Sun, Mingzhai
    RENEWABLE ENERGY, 2023, 205 : 598 - 607
  • [43] Ultra-short-term wind power forecasting techniques: comparative analysis and future trends
    Yu, Guangzheng
    Shen, Lingxu
    Dong, Qi
    Cui, Gean
    Wang, Siyuan
    Xin, Dezheng
    Chen, Xinyu
    Lu, Wu
    FRONTIERS IN ENERGY RESEARCH, 2024, 11
  • [44] Ultra-Short-Term Wind Power Forecasting Based on Fluctuation Pattern Clustering and Prediction
    Fan, Huijing
    Zhen, Zhao
    Liu, Jiaming
    Wang, Fei
    Mi, Zengqiang
    2020 IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (SCEMS 2020), 2020, : 918 - 923
  • [45] Ultra-Short-Term Wind Power Forecasting Based on DT-DSCTransformer Model
    Gao, Yanlong
    Xing, Feng
    Kang, Lipeng
    Zhang, Mingming
    Qin, Caiyan
    IEEE ACCESS, 2025, 13 : 22919 - 22930
  • [46] Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model
    Zhao, Ziquan
    Bai, Jing
    ENERGIES, 2024, 17 (22)
  • [47] Ultra-short-term Forecasting Method of Wind Power Based on Fluctuation Law Mining
    Liang Z.
    Wang Z.
    Feng S.
    Dong C.
    Wan X.
    Qiu G.
    Wang, Zheng (wangz@epri.sgcc.com.cn), 1600, Power System Technology Press (44): : 4096 - 4104
  • [48] Ultra-Short-Term Probabilistic Wind Forecasting: Can Numerical Weather Predictions Help?
    Ye, Feng
    Brodie, Joseph
    Miles, Travis
    Ezzat, Ahmed Aziz
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [49] Ultra-Short-Term Wind Power Subsection Forecasting Method Based on Extreme Weather
    Yu, Guang Zheng
    Lu, Liu
    Tang, Bo
    Wang, Si Yuan
    Chung, C. Y.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5045 - 5056
  • [50] Ultra-short-term multi-node load forecasting - a composite approach
    Han, X. S.
    Han, L.
    Gooi, H. B.
    Pan, Z. Y.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2012, 6 (05) : 436 - 444