A Generalized Mandelbrot Set Based On Distance Ratio

被引:0
|
作者
Zhang, Xizhe [1 ]
Lv, Tianyang
Wang, Zhengxuan [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, 2699 Qianjin St, Changchun 130012, Jilin, Peoples R China
关键词
Fractal; Distance Ratio; complex mapping; Mandelbrot set;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The iteration of complex function can generate beautiful fractal images. This paper presents a novel method based on the iteration of the distance ratio with two points, which generates a generalized Mandelbrot set according to distance ratio convergence times. This paper states the definition of distance ratio and its iteration. Then taking the complex function f(z)= z(alpha)+c for example, it discusses the visual structure of generalized Mandelbrot with various exponent and comparing it with Mandelbrot set generated by escape time algorithm. When exponent alpha>1, the outer border of DRM is same as Mandelbrot set, but has complex inner structure; when alpha<0, the inner border of DRM is same as Mandelbrot set, DRM is the "outer" region and complement set of Mandelbrot set, the two sets cover the whole complex plane.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [41] Irrational points in the Mandelbrot set
    Kumar, V
    Joseph, KB
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (03) : 233 - 236
  • [42] Shrubs in the mandelbrot set ordering
    Romera, M
    Pastor, G
    Alvarez, G
    Montoya, F
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (08): : 2279 - 2300
  • [43] Scouting the Mandelbrot set with Memory
    Alonso-Sanz, Ramon
    COMPLEXITY, 2016, 21 (05) : 84 - 96
  • [44] On the Fibonacci-Mandelbrot set
    Sirvent, Victor F.
    Thuswaldner, Joerg M.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (01): : 174 - 190
  • [45] THE UNIFORMIZATION OF THE COMPLEMENT OF THE MANDELBROT SET
    JUNGREIS, I
    DUKE MATHEMATICAL JOURNAL, 1985, 52 (04) : 935 - 938
  • [46] FIELD LINES IN THE MANDELBROT SET
    PHILIP, KW
    COMPUTERS & GRAPHICS, 1992, 16 (04) : 443 - 447
  • [47] Implementation of Mandelbrot Set and Julia Set On SOPC Platform
    Zhang, Xin
    Xu, Zhiqiang
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1494 - 1498
  • [48] SPIRALS IN THE MANDELBROT SET .2.
    STEPHENSON, J
    PHYSICA A, 1994, 205 (04): : 646 - 655
  • [49] COUNTING HYPERBOLIC COMPONENTS OF THE MANDELBROT SET
    LUTZKY, M
    PHYSICS LETTERS A, 1993, 177 (4-5) : 338 - 340
  • [50] Precision and Velocity of Simulating Mandelbrot Set
    盛昭瀚
    赵林度
    刘世军
    Journal of Southeast University(English Edition), 1996, (02) : 81 - 87