Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique

被引:117
|
作者
Shakerin, Sajad [1 ]
Hadadzadeh, Amir [1 ,2 ]
Amirkhiz, Babak Shalchi [1 ,2 ]
Shamsdini, Seyedamirreza [1 ]
Li, Jian [2 ]
Mohammadi, Mohsen [1 ]
机构
[1] Univ New Brunswick, MAMCE, Fredericton, NB E3B 5A1, Canada
[2] Nat Resources Canada, CanmetMAT, 183 Longwood Rd South, Hamilton, ON L8P 0A5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Maraging steel; Laser powder bed fusion; Additive manufacturing; Microstructure; Dissimilar joining; MECHANICAL-PROPERTIES; TOOL STEEL; MICROSTRUCTURAL EVOLUTION; HEAT-TREATMENT; H13; STEEL; BEHAVIOR; STRENGTH; PERFORMANCE; NANOPRECIPITATION; PRECIPITATION;
D O I
10.1016/j.addma.2019.100797
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, maraging steel powder was deposited on top of an H13 tool steel using laser powder bed fusion (LPBF) technique. The mechanical properties, microstructure, and interfacial characteristics of the additively manufactured MS1-H13 bimetals were investigated using different mechanical and microstructural techniques. Several uniaxial tensile tests and micro-hardness indentations were performed to identify the mechanical properties of the additively manufactured bimetal. Advanced electron microscopy techniques including electron backscatter diffraction and transmission electron microscopy were used to identify the mechanism of interface formation. In addition, the microstructure of the additively manufactured maraging steel along with the conventionally fabricated substrate-H13 were studied. It was concluded that, a very narrow interface was formed between the additively manufactured maraging steel and the conventional H13 without forming cracks or discontinuities. The first deposited layers possessed the highest hardness due to grain size refinement, solid solution strengthening, and cellular solidification structure. Finally, under uniaxial tensile loading, the additively manufactured bimetal steel failed from the underlying tool steel, indicating a robust interface.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
    Sing, S. L.
    Yeong, W. Y.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (03) : 359 - 370
  • [42] Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces
    Toshi-Taka Ikeshoji
    Makiko Yonehara
    Chika Kato
    Yuma Yanaga
    Koki Takeshita
    Hideki Kyogoku
    Scientific Reports, 12
  • [43] Laser Powder Bed Fusion Additive Manufacturing of Recycled Zircaloy-4
    Soung Yeoul Ahn
    Sang Guk Jeong
    Eun Seong Kim
    Suk Hoon Kang
    Jungho Choe
    Joo Young Ryu
    Dae Woon Choi
    Jin Seok Lee
    Jung-Wook Cho
    Takayoshi Nakano
    Hyoung Seop Kim
    Metals and Materials International, 2023, 29 : 2760 - 2766
  • [44] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Zhuangzhuang Liu
    Qihang Zhou
    Xiaokang Liang
    Xiebin Wang
    Guichuan Li
    Kim Vanmeensel
    Jianxin Xie
    International Journal of Extreme Manufacturing, 2024, (02) : 33 - 68
  • [45] A mechanistic explanation of shrinkage porosity in laser powder bed fusion additive manufacturing
    Templeton, William Frieden
    Hinnebusch, Shawn
    Strayer, Seth T.
    To, Albert C.
    Pistorius, P. Chris
    Narra, Sneha Prabha
    ACTA MATERIALIA, 2024, 266
  • [46] Composition regulation of composite materials in laser powder bed fusion additive manufacturing
    Yao, Dengzhi
    Wang, Ju
    Cai, Yao
    Zhao, Tingting
    An, Xizhong
    Zhang, Hao
    Fu, Haitao
    Yang, Xiaohong
    Zou, Qingchuan
    Wang, Lin
    POWDER TECHNOLOGY, 2022, 408
  • [47] Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys
    Meng, Fuxiang
    Du, Yulei
    MATERIALS, 2024, 17 (17)
  • [48] Dynamics of pore formation during laser powder bed fusion additive manufacturing
    Aiden A. Martin
    Nicholas P. Calta
    Saad A. Khairallah
    Jenny Wang
    Phillip J. Depond
    Anthony Y. Fong
    Vivek Thampy
    Gabe M. Guss
    Andrew M. Kiss
    Kevin H. Stone
    Christopher J. Tassone
    Johanna Nelson Weker
    Michael F. Toney
    Tony van Buuren
    Manyalibo J. Matthews
    Nature Communications, 10
  • [49] ON CHARACTERIZING UNCERTAINTY SOURCES IN LASER POWDER BED FUSION ADDITIVE MANUFACTURING MODELS
    Moges, Tesfaye
    Witherell, Paul
    Ameta, Gaurav
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 2A, 2019,
  • [50] Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces
    Ikeshoji, Toshi-Taka
    Yonehara, Makiko
    Kato, Chika
    Yanaga, Yuma
    Takeshita, Koki
    Kyogoku, Hideki
    SCIENTIFIC REPORTS, 2022, 12 (01)