Effect of scouring in sand on monopile-supported offshore wind turbines

被引:24
|
作者
Abhinav, K. A. [1 ]
Saha, Nilanjan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Ocean Engn, Madras, Tamil Nadu, India
关键词
Monopile; offshore wind turbines; scouring; random response analysis; MATHEMATICAL-ANALYSIS; RANDOM NOISE; FOUNDATIONS;
D O I
10.1080/1064119X.2016.1255687
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper analyzes the influence of scour on the overall response of monopile-supported offshore wind turbines (OWTs) in 20-m water depth. Scouring effects on OWTs have been often studied within the geotechnical domain, considering static loads at the mudline. The present work attempts to address the scour-induced problems in OWTs by making use of an integrated aerodynamic-hydrodynamic load approach in sandy soils. The OWT analysis is simulated for operational and shut-down (parked) condition. Under parked situations, the OWT blades are feathered, and power production is suspended, owing to structural safety concerns. The 50 Monte Carlo responses of stochastic sea-state condition (wind speed with turbulence, significant wave height, and peak spectral period) are generated. Irregular, long-crested waves are generated using the Joint North Sea Wave Project (JONSWAP) spectrum. Then from each simulation, the ensemble response is obtained. Sandy soils of varying densities are considered. Results indicate that OWTs founded on loose sands suffer significant stiffness (and hence natural frequency) reductions, shifting the structure into the resonance regime. Lateral responses also show an escalation with reduction in density of sandy soil.
引用
收藏
页码:817 / 828
页数:12
相关论文
共 50 条
  • [41] Effect of long-term lateral cyclic loading on the dynamic response and fatigue life of monopile-supported offshore wind turbines
    Ma, Hongwang
    Deng, Yawen
    Chang, Xuening
    MARINE STRUCTURES, 2024, 93
  • [42] Vibration reduction of monopile-supported offshore wind turbines based on finite element structural analysis and active control
    Alkhoury, Philip
    Ait-Ahmed, Mourad
    Soubra, Abdul-Hamid
    Rey, Valentine
    OCEAN ENGINEERING, 2022, 263
  • [43] Assessment of Practical Methods to Predict Accumulated Rotations of Monopile-Supported Offshore Wind Turbines in Cohesionless Ground Profiles
    Jalbi, Saleh
    Hilton, Joseph
    Jacques, Luke
    ENERGIES, 2020, 13 (15)
  • [44] Closed-form solution to multi-mode aerodynamic damping of monopile-supported offshore wind turbines
    Li, Xiang
    Basu, Biswajit
    Habib, Giuseppe
    Zhang, Zili
    ENGINEERING STRUCTURES, 2025, 332
  • [45] Shaking table tests and numerical analysis of monopile-supported offshore wind turbines under combined wind, wave and seismic loads
    Xu, Ying
    Shen, Tao
    Zuo, Junfan
    Bhattacharya, Subhamoy
    Han, Qinghua
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2024, 183
  • [46] A semi-analytical approach for dynamic responses of monopile-supported offshore wind turbines subjected to accidental loads
    Hammad, Ahmed
    Yu, Zhaolong
    APPLIED OCEAN RESEARCH, 2024, 153
  • [47] Fatigue analysis of monopile-supported offshore wind turbine under varied supported conditions
    Liang, Jun
    Wang, Ying
    Li, Chao
    Ou, Jinping
    OCEAN ENGINEERING, 2025, 320
  • [48] Effect of scour erosion on mode shapes of a 5 MW monopile-supported offshore wind turbine
    Jawalageri, Satish
    Prendergast, Luke J.
    Jalilvand, Soroosh
    Malekjafarian, Abdollah
    Ocean Engineering, 2022, 266
  • [49] Effect of scour erosion on mode shapes of a 5 MW monopile-supported offshore wind turbine
    Jawalageri, Satish
    Prendergast, Luke J.
    Jalilvand, Soroosh
    Malekjafarian, Abdollah
    OCEAN ENGINEERING, 2022, 266
  • [50] Foundation damping for monopile supported offshore wind turbines: A review
    Malekjafarian, Abdollah
    Jalilvand, Soroosh
    Doherty, Paul
    Igoe, David
    MARINE STRUCTURES, 2021, 77