Multi-material topology optimization considering isotropic and anisotropic materials combination

被引:13
|
作者
Bohrer, Rubens [1 ]
Kim, Il Yong [1 ]
机构
[1] Queens Univ, Dept Mech & Mat Engn, 130 Stuart St, Kingston, ON K7L 3N6, Canada
关键词
Multi-material topology optimization; Anisotropic materials; Computational efficiency; DESIGN; CODE;
D O I
10.1007/s00158-021-02941-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multi-material topology optimization that is based on homogenization schemes has evolved from the conventional optimization methods to the general multi-material solution methodology. While the former interpolation schemes restrict the solution to the isotropic material with constant Poisson's ratio, the latter generalizes the application to both isotropic and anisotropic materials, as well as a combination of them. Within density-based multi-material topology optimization, the discrete material optimization scheme is a well-known tool to solve the mixture of isotropic and anisotropic materials; nevertheless, most of its applications are based on open-source finite element codes. An alternative to the discrete material optimization scheme is the element duplication method that relies on the idea of stacking multiple elements and assigning one candidate material to each stacked element, thus avoiding the need-to-know important information from open-source finite element engines to compute the first-order sensitivities. Besides its simple implementation along with commercial finite element solvers, the element duplication procedure diminishes computational efficiency due to the element stacking process. In this paper, a solution for this process is proposed for the multi-material topology optimization problem by considering the mixture of isotropic and anisotropic materials without the need for stacking elements in commercial finite element engines, improving the numerical efficiency of element duplication methods as well as being an alternative to compute the sensitivities in the discrete material optimization scheme. Traditional topology optimization response sensitivities are thoroughly discussed, and several numerical examples are presented demonstrating the effectiveness of the proposed approach. In addition, a new approach to compute displacement sensitivities is presented.
引用
收藏
页码:1567 / 1583
页数:17
相关论文
共 50 条
  • [21] Multi-material topology optimization with strength constraints
    Anand Ramani
    Structural and Multidisciplinary Optimization, 2011, 43 : 597 - 615
  • [22] MULTI-MATERIAL TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING
    Mirzendehdel, Amir M.
    Suresh, Krishnan
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 1A, 2016,
  • [23] Multi-material topology optimization with strength constraints
    Ramani, Anand
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 43 (05) : 597 - 615
  • [24] Stress-based multi-material structural topology optimization considering graded interfaces
    Han, Yongsheng
    Xu, Bin
    Duan, Zunyi
    Huang, Xiaodong
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [25] Topology optimization of periodic multi-material heat conduction structures considering transient effects
    Li X.
    Zhao Q.
    Long K.
    Zhang H.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (12):
  • [26] Multi-material polygonal topology optimization for functionally graded isotropic and incompressible linear elastic structures
    Banh, Thanh T.
    Kang, Joowon
    Shin, Soomi
    Lee, Dongkyu
    STEEL AND COMPOSITE STRUCTURES, 2024, 51 (03): : 261 - 270
  • [27] Material interpolation schemes for unified topology and multi-material optimization
    Hvejsel, Christian Frier
    Lund, Erik
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 43 (06) : 811 - 825
  • [28] Material interpolation schemes for unified topology and multi-material optimization
    Christian Frier Hvejsel
    Erik Lund
    Structural and Multidisciplinary Optimization, 2011, 43 : 811 - 825
  • [29] Multi-material topology optimization for thermal buckling criteria
    Wu, Chi
    Fang, Jianguang
    Li, Qing
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 1136 - 1155
  • [30] Multi-material topology optimization for automotive design problems
    Li, Chao
    Kim, Il Yong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2018, 232 (14) : 1950 - 1969