Modeling Spatio-Temporal Extreme Events Using Graphical Models

被引:5
|
作者
Yu, Hang [1 ]
Dauwels, Justin [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 639798, Singapore
关键词
Extreme events; graphical models; spatio-temporal; thin-plate models; stochastic variational inference; sublinear; PRECIPITATION; INFERENCE;
D O I
10.1109/TSP.2015.2491882
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel statistical model to describe spatio-temporal extreme events. The model can be used, for instance, to estimate extreme-value temporal pattern such as seasonality and trend, and further to predict the distribution of extreme events in the future. Such model usually involves thousands or even millions of variables in the spatio-temporal domain, whereas only one single observation is available for each location and time point. To address this challenge, previous works usually employ learning and inference methods that are computationally burdensome, and therefore are prohibitive for large-scale data. Moreover, they assume that the shape and scale parameters of the extreme-value distributions are constant across the spatio-temporal domain, which is often too restrictive in practice. In this paper, we break through these limitations by exploring graphical models to capture the highly structured dependencies among the parameters of extreme-value distributions. Furthermore, we develop an efficient stochastic variational inference (SVI) algorithm to learn the parameters of the resulting non-Gaussian graphical model. The computational complexity of the SVI algorithm is sublinear in the number of variables, thus enabling the proposed model to tackle large-scale spatio-temporal data in real-life applications. Results of both synthetic and real data demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:1101 / 1116
页数:16
相关论文
共 50 条
  • [41] Methodology to Investigate Spatio-Temporal Trends in Extreme Weather Events: Case Durango, Mexico
    Blanco, Ma. Esperanza
    Vaquera, Humberto
    Villasenor, Jose A.
    Valdez-Lazalde, J. Rene
    Rosengaus, Michel
    Tecnologia y Ciencias del Agua, 2014, 5 (06) : 25 - 39
  • [42] Estimation of spatio-temporal extreme distribution using a quantile factor model
    Kim, Joonpyo
    Park, Seoncheol
    Kwon, Junhyeon
    Lim, Yaeji
    Oh, Hee-Seok
    EXTREMES, 2021, 24 (01) : 177 - 195
  • [43] Estimation of spatio-temporal extreme distribution using a quantile factor model
    Joonpyo Kim
    Seoncheol Park
    Junhyeon Kwon
    Yaeji Lim
    Hee-Seok Oh
    Extremes, 2021, 24 : 177 - 195
  • [44] Recognizing the Aggregation Characteristics of Extreme Precipitation Events Using Spatio-Temporal Scanning and the Local Spatial Autocorrelation Model
    Wan, Changjun
    Cheng, Changxiu
    Ye, Sijing
    Shen, Shi
    Zhang, Ting
    ATMOSPHERE, 2021, 12 (02)
  • [45] Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros
    Arab, Ali
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2015, 12 (09): : 10536 - 10548
  • [46] Image-based spatio-temporal modeling and view interpolation of dynamic events
    Vedula, S
    Baker, S
    Kanade, T
    ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (02): : 240 - 261
  • [47] Spatio-temporal modeling of city events combining datasets in cyberspace and real space
    Tang L.
    Dai L.
    Ren C.
    Zhang X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (05): : 618 - 629
  • [48] Spatio-temporal Event Modeling and Ranking
    Li, Xuefei
    Cai, Hongyun
    Huang, Zi
    Yang, Yang
    Zhou, Xiaofang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2013, PT II, 2013, 8181 : 361 - 374
  • [49] Spatio-temporal Modeling of Mosquito Distribution
    Dumont, Y.
    Dufourd, C.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [50] Modeling consistency of spatio-temporal graphs
    Del Mondo, G.
    Rodriguez, M. A.
    Claramunt, C.
    Bravo, L.
    Thibaud, R.
    DATA & KNOWLEDGE ENGINEERING, 2013, 84 : 59 - 80