Smooth nonlinear fitting scheme for analog multiplierless implementation of Hindmarsh-Rose neuron model

被引:37
|
作者
Cai, Jianming [1 ]
Bao, Han [1 ]
Xu, Quan [1 ]
Hua, Zhongyun [2 ]
Bao, Bocheng [1 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Circuit implementation; Hindmarsh– Rose (HR) neuron model; Multiplier; Nonlinear fitting; Nonlinearity; ELECTRICAL-ACTIVITY;
D O I
10.1007/s11071-021-06453-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Hindmarsh-Rose (HR) neuron model is built to describe the neuron electrical activities. Due to the polynomial nonlinearities, multipliers are required to implement the HR neuron model in analog. In order to avoid the multipliers, this brief presents a novel smooth nonlinear fitting scheme. We first construct two nonlinear fitting functions using the composite hyperbolic tangent functions and then implement an analog multiplierless circuit for the two-dimensional (2D) and three-dimensional (3D) HR neuron models. To exhibit the nonlinear fitting effects, numerical simulations and hardware experiments for the fitted HR neuron model are provided successively. The results show that the fitted HR neuron model with analog multiplierless circuit can display different operation patterns of resting, periodic spiking, and periodic/chaotic bursting, entirely behaving like the original HR neuron model. The analog multiplierless circuit has the advantage of low implementation cost and thereby it is suitable for hardware implementation of large-scale neural networks.
引用
收藏
页码:4379 / 4389
页数:11
相关论文
共 50 条
  • [31] Bifurcation study of neuron firing activity of the modified Hindmarsh-Rose model
    Wu, Kaijun
    Luo, Tianqi
    Lu, Huaiwei
    Wang, Yang
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (03): : 739 - 747
  • [32] Switching dynamics analysis and synchronous control of a non-smooth memristive Hindmarsh-Rose neuron model
    Liu, Wenyan
    Qiao, Shuai
    Gao, Chenghua
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [33] Noise-driven bursting birhythmicity in the Hindmarsh-Rose neuron model
    Slepukhina, Evdokiia
    Bashkirtseva, Irina
    Kuegler, Philipp
    Ryashko, Lev
    CHAOS, 2023, 33 (03)
  • [34] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
    Usha, K.
    Subha, P. A.
    CHINESE PHYSICS B, 2019, 28 (02)
  • [35] Dynamical behavior and network analysis of an extended Hindmarsh-Rose neuron model
    Rajagopal, Karthikeyan
    Khalaf, Abdul Jalil M.
    Parastesh, Fatemeh
    Moroz, Irene
    Karthikeyan, Anitha
    Jafari, Sajad
    NONLINEAR DYNAMICS, 2019, 98 (01) : 477 - 487
  • [36] Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays
    Lakshmanan, S.
    Lim, C. P.
    Nahavandi, S.
    Prakash, M.
    Balasubramaniam, P.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (08) : 1953 - 1958
  • [37] Synchronization of boundary coupled Hindmarsh-Rose neuron network
    Phan, Chi
    You, Yuncheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [38] CANARDS EXISTENCE IN THE HINDMARSH-ROSE MODEL
    Ginoux, Jean-Marc
    Llibre, Jaume
    Tchizawa, Kiyoyuki
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2019, 14 (04)
  • [39] Shrimp hubs in the Hindmarsh-Rose model
    Stenzinger, Rafael V.
    Oliveira, Vinicius Luz
    Tragtenberg, M. H. R.
    CHAOS, 2025, 35 (02)
  • [40] Nonlinear feedback coupling in Hindmarsh-Rose neurons
    Thottil, Sunsu Kurian
    Ignatius, Rose P.
    NONLINEAR DYNAMICS, 2017, 87 (03) : 1879 - 1899