Reverse mathematics and order theoretic fixed point theorems

被引:4
|
作者
Sato, Takashi [1 ]
Yamazaki, Takeshi [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9800845, Japan
关键词
Reverse mathematics; Second order arithmetic; Order theory; Countable posets; Countable lattices; Fixed point theorem;
D O I
10.1007/s00153-017-0526-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theory of countable partially ordered sets (posets) is developed within a weak subsystem of second order arithmetic. We within RCA(0) give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over REA(0). Then we within REA(0) give proofs of Knaster-Tarski fixed point theorem, Tarski-Kantorovitch fixed point theorem, Bourbaki-Witt fixed point theorem, and Abian-Brown maximal fixed point theorem for countable lattices or posets. We also give Reverse Mathematics results of the fixed point theory of countable posets; Abian-Brown least fixed point theorem, Davis' converse for countable lattices, Markowski's converse for countable posets, and arithmetical comprehension axiom are pairwise equivalent over REA(0). Here the converses state that some fixed point properties characterize the completeness of the underlying spaces.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 50 条
  • [31] ASYMPTOTIC FIXED POINT THEOREMS
    BROWDER, FE
    MATHEMATISCHE ANNALEN, 1970, 185 (01) : 38 - &
  • [32] LEFSCHETZ FIXED POINT THEOREMS
    POWERS, MJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 568 - &
  • [33] On fixed point theorems and nonsensitivity
    Glasner, Eli
    Megrelishvili, Michael
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) : 289 - 305
  • [34] SOME FIXED POINT THEOREMS
    CARTWRIGHT, ML
    LITTLEWOOD, JE
    ANNALS OF MATHEMATICS, 1951, 54 (01) : 1 - 37
  • [35] On Nonunique Fixed Point Theorems
    Liu, Zeqing
    Wang, Li
    Kang, Shin Min
    Kim, Yong Soo
    APPLIED MATHEMATICS E-NOTES, 2008, 8 : 231 - 237
  • [36] Relation-theoretic metrical coincidence and common fixed point theorems under nonlinear contractions
    Ahmadullah, Md
    Imdad, Mohammad
    Arif, Mohammad
    APPLIED GENERAL TOPOLOGY, 2018, 19 (01): : 65 - 84
  • [37] FIXED-POINT THEOREMS
    CHATTERJEA, SK
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1972, 25 (06): : 727 - +
  • [38] FIXED-POINT THEOREMS
    SHINBROT, M
    SCIENTIFIC AMERICAN, 1966, 214 (01) : 105 - &
  • [39] APPROXIMATE FIXED POINT THEOREMS
    Berinde, Madalina
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (01): : 11 - 25
  • [40] Fixed point theorems for φ-contractions
    Samreen, Maria
    Kiran, Quanita
    Kamran, Tayyab
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,