Infinitely many stationary solutions of discrete vector nonlinear Schrodinger equation with symmetry
被引:3
|
作者:
Yang, Minbo
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
Yang, Minbo
[1
,2
]
Zhao, Fukun
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
Zhao, Fukun
[3
]
Ding, Yanheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
Ding, Yanheng
[2
]
机构:
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R China
[3] Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
Discrete vector Schrodinger equation;
Stationary solutions;
Critical point theory;
HAMILTONIAN-SYSTEMS;
PERIODIC-SOLUTIONS;
HOMOCLINIC ORBITS;
SUBHARMONIC SOLUTIONS;
DIFFERENCE-EQUATIONS;
GAP SOLITONS;
D O I:
10.1016/j.amc.2009.12.045
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study the existence of stationary solutions for the following discrete vector nonlinear Schrodinger equation i partial derivative phi(n)/partial derivative(t) = -Lambda phi(n) + tau(n)phi(n) - if(n, vertical bar phi(n)vertical bar)phi(n), where phi(n) is a sequence of 2-component vector, i = (0 1 1 0), Delta phi(n) = phi(n+1) + phi(n-1) - 2 phi(n) is the discrete Laplacian in one spatial dimension and sequence tau(n) is assumed to be N-periodic in n, i.e. tau(n+N) = tau(n). We prove the existence of infinitely many nontrivial stationary solutions for this system by variational methods. The same method can also be applied to obtain infinitely many breather solutions for single discrete nonlinear Schrodinger equation. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Yachay Tech Univ, Hda San Jose S-N & Proyecto Yachay, Urcuqui 100119, EcuadorYachay Tech Univ, Hda San Jose S-N & Proyecto Yachay, Urcuqui 100119, Ecuador
Aguas-Barreno, Ariel
Cevallos-Chaven, Jordy
论文数: 0引用数: 0
h-index: 0
机构:
Yachay Tech Univ, Hda San Jose S-N & Proyecto Yachay, Urcuqui 100119, Ecuador
Arizona State Univ, 1031 South Palm Walk, Tempe, AZ 85281 USAYachay Tech Univ, Hda San Jose S-N & Proyecto Yachay, Urcuqui 100119, Ecuador
Cevallos-Chaven, Jordy
Mayorga-Zambrano, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Yachay Tech Univ, Hda San Jose S-N & Proyecto Yachay, Urcuqui 100119, EcuadorYachay Tech Univ, Hda San Jose S-N & Proyecto Yachay, Urcuqui 100119, Ecuador
Mayorga-Zambrano, Juan
Medina-Espinosa, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Chile, Vicuna Mackenna 4860, Santiago, Chile
Escuela Politec Nacl, Ladron de Guevara E11-253, Quito 170525, EcuadorYachay Tech Univ, Hda San Jose S-N & Proyecto Yachay, Urcuqui 100119, Ecuador
机构:
Hohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R ChinaHohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R China
Yun, Yongzhen
An, Tianqing
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R ChinaHohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R China
An, Tianqing
Zuo, Jiabin
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Engn Normal Univ, Fac Sci Appl, Changchun, Jilin, Peoples R ChinaHohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R China
Zuo, Jiabin
Zhao, Dafang
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R China
Hubei Normal Univ, Sch Math & Stat, Huangshi, Hubei, Peoples R ChinaHohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R China