A halfspace theorem for mean curvature H=1/2 surfaces in H2 x R

被引:11
|
作者
Nelli, Barbara [2 ]
Earp, Ricardo Sa [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil
[2] Univ Aquila, I-67100 Laquila, Italy
关键词
Second order elliptic equation; Maximum principle; Vertical end; Mean curvature; Halfspace theorem; SCREW MOTION SURFACES;
D O I
10.1016/j.jmaa.2009.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a vertical halfspace theorem for surfaces with constant mean curvature H = 1/2, properly immersed in the product space H-2 x R, where H-2 is the hyperbolic plane and R is the set of real numbers. The proof is a geometric application of the classical maximum principle for second order elliptic PDE, using the family of noncompact rotational H = 1/2 surfaces in H-2 x R. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 50 条
  • [21] Complete surfaces of constant curvature in H2 x R and S2 x R
    Aledo, Juan A.
    Espinar, Jose M.
    Galvez, Jose A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (03) : 347 - 363
  • [22] A Hilbert-type theorem for spacelike surfaces with constant Gaussian curvature in H2 x R1
    Albujer, Alma L.
    Alias, Luis J.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (04): : 465 - 478
  • [23] Rotators-translators to mean curvature flow in H2 x R
    de Lima, R. F.
    Ramos, A. K.
    dos Santos, J. P.
    ARCHIV DER MATHEMATIK, 2025, 124 (03) : 343 - 353
  • [24] The cylinder theorem in H2 x R
    Marques Barbosa, Joao Lucas
    do Carmo, Manfredo Perdigao
    JOURNAL OF GEOMETRY, 2020, 111 (03)
  • [25] Minimal surfaces in H2 x R
    Nelli, B
    Rosenberg, H
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2002, 33 (02): : 263 - 292
  • [26] A GENERAL HALFSPACE THEOREM FOR CONSTANT MEAN CURVATURE SURFACES
    Mazet, Laurent
    AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (03) : 801 - 834
  • [27] Minimal surfaces with positive genus and finite total curvature in H2 x R
    Martin, Francisco
    Mazzeo, Rafe
    Magdalena Rodriguez, M.
    GEOMETRY & TOPOLOGY, 2014, 18 (01) : 141 - 177
  • [28] Simply Connected Minimal Surfaces with Finite Total Curvature in H2 x R
    Pyo, Juncheol
    Rodriguez, Magdalena
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (11) : 2944 - 2954
  • [29] CONSTANT MEAN CURVATURE ISOMETRIC IMMERSIONS INTO S2 x R AND H2 x R AND RELATED RESULTS
    Daniel, Benoit
    Domingos, Iury
    Vitorio, Feliciano
    ANNALES DE L INSTITUT FOURIER, 2023, 73 (01) : 203 - 249
  • [30] Complete surfaces of constant curvature in H2 × R and S2 × R
    Juan A. Aledo
    José M. Espinar
    José A. Gálvez
    Calculus of Variations and Partial Differential Equations, 2007, 29 : 347 - 363