A halfspace theorem for mean curvature H=1/2 surfaces in H2 x R

被引:11
|
作者
Nelli, Barbara [2 ]
Earp, Ricardo Sa [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil
[2] Univ Aquila, I-67100 Laquila, Italy
关键词
Second order elliptic equation; Maximum principle; Vertical end; Mean curvature; Halfspace theorem; SCREW MOTION SURFACES;
D O I
10.1016/j.jmaa.2009.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a vertical halfspace theorem for surfaces with constant mean curvature H = 1/2, properly immersed in the product space H-2 x R, where H-2 is the hyperbolic plane and R is the set of real numbers. The proof is a geometric application of the classical maximum principle for second order elliptic PDE, using the family of noncompact rotational H = 1/2 surfaces in H-2 x R. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 50 条