L1-Norm Tucker Tensor Decomposition

被引:25
|
作者
Chachlakis, Dimitris G. [1 ]
Prater-Bennette, Ashley [2 ]
Markopoulos, Panos P. [1 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] Air Force Res Lab, Informat Directorate, Rome, NY 13441 USA
基金
美国国家科学基金会;
关键词
Data analysis; L1-norm; multi-modal data; tensor decomposition; Tucker; PRINCIPAL-COMPONENT ANALYSIS; ALGORITHMS; REPRESENTATION; APPROXIMATIONS; CHANNEL; RANK-1; PCA;
D O I
10.1109/ACCESS.2019.2955134
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to peripheral/outlying entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of Tucker decomposition, and present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The proposed algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker decomposition, implemented by means of the proposed algorithms, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries.
引用
收藏
页码:178454 / 178465
页数:12
相关论文
共 50 条
  • [41] A direct approach for L1-norm minimisation
    Mahboub, Vahid
    SURVEY REVIEW, 2024, 56 (397) : 407 - 411
  • [42] Trigonometric approximation of functions in L1-norm
    Chandra, Prem
    Karanjgaokar, Varsha
    PERIODICA MATHEMATICA HUNGARICA, 2022, 84 (02) : 177 - 185
  • [43] ON THE LORENTZ CONJECTURES UNDER THE L1-NORM
    叶懋冬
    Chinese Annals of Mathematics, 1990, (03) : 359 - 362
  • [44] Fisher Discriminant Analysis with L1-Norm
    Wang, Haixian
    Lu, Xuesong
    Hu, Zilan
    Zheng, Wenming
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (06) : 828 - 842
  • [45] On the rotational invariant L1-norm PCA
    Neumayer, Sebastian
    Nimmer, Max
    Setzer, Simon
    Steidl, Gabriele
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 587 : 243 - 270
  • [46] GENERALIZED INVERSES UNDER THE L1-NORM
    DECHELA, DF
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 94 : 237 - 261
  • [47] An estimate of the L1-norm of an exponential sum
    Karatsuba, AA
    MATHEMATICAL NOTES, 1998, 64 (3-4) : 401 - 404
  • [48] THE PLACE OF THE L1-NORM IN ROBUST ESTIMATION
    HUBER, PJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 255 - 262
  • [49] The L1-norm density estimator process
    Giné, E
    Mason, DM
    Zaitsev, AY
    ANNALS OF PROBABILITY, 2003, 31 (02): : 719 - 768
  • [50] Beacon-assisted Underwater Localization by L1-norm Space-Time Tensor Subspaces
    Tountas, Konstantinos
    Sklivanitis, Georgios
    Pados, Dimitris A.
    OCEANS 2019 MTS/IEEE SEATTLE, 2019,