Optimizing GPU Cache Policies for MI Workloads

被引:0
|
作者
Alsop, Johnathan [1 ]
Sinclair, Matthew D. [1 ,2 ]
Bharadwaj, Srikant [1 ]
Dutu, Alexandru [1 ]
Gutierrez, Anthony [1 ]
Kayiran, Onur [1 ]
LeBeane, Michael [1 ]
Potter, Brandon [1 ]
Puthoor, Sooraj [1 ,2 ]
Zhang, Xianwei [1 ]
Yeh, Tsung Tai [3 ]
Beckmann, Bradford M. [1 ]
机构
[1] AMD Res, Urbana, IL 61801 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
[3] Purdue Univ, W Lafayette, IN 47907 USA
关键词
execution; driven simulation; GPU caching; machine intelligence; machine learning;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In recent years, machine intelligence (MI) applications have emerged as a major driver for the computing industry. Optimizing these workloads is important, but complicated. As memory demands grow and data movement overheads increasingly limit performance, determining the best GPU caching policy to use for a diverse range of MI workloads represents one important challenge. To study this, we evaluate 17 MI applications and characterize their behavior using a range of GPU caching strategies. In our evaluations, we find that the choice of caching policy in GPU caches involves multiple performance trade-offs and interactions, and there is no one-size-fits-all GPU caching policy for MI workloads. Based on detailed simulation results, we motivate and evaluate a set of cache optimizations that consistently match the performance of the best static GPU caching policies.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 50 条
  • [41] HSCS: a hybrid shared cache scheduling scheme for multiprogrammed workloads
    Zhang, Jingyu
    Wu, Chentao
    Yang, Dingyu
    Chen, Yuanyi
    Meng, Xiaodong
    Xu, Liting
    Guo, Minyi
    FRONTIERS OF COMPUTER SCIENCE, 2018, 12 (06) : 1090 - 1104
  • [42] Scalable Shared-Cache Management by Containing Thrashing Workloads
    Xie, Yuejian
    Loh, Gabriel H.
    HIGH PERFORMANCE EMBEDDED ARCHITECTURES AND COMPILERS, PROCEEDINGS, 2010, 5952 : 262 - 276
  • [43] Optimizing Cloud Workloads: Autoscaling with Reinforcement Learning
    Mishra, Pratik
    Hans, Sandeep
    Saha, Diptikalyan
    Moogi, Pratibha
    2024 IEEE 17TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, CLOUD 2024, 2024, : 217 - 222
  • [44] HSCS: a hybrid shared cache scheduling scheme for multiprogrammed workloads
    Jingyu Zhang
    Chentao Wu
    Dingyu Yang
    Yuanyi Chen
    Xiaodong Meng
    Liting Xu
    Minyi Guo
    Frontiers of Computer Science, 2018, 12 : 1090 - 1104
  • [45] SortCache: Intelligent Cache Management for Accelerating Sparse Data Workloads
    Srikanth, Sriseshan
    Jain, Anirudh
    Conte, Thomas M.
    Debenedictis, Erik P.
    Cook, Jeanine
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2021, 18 (04)
  • [46] Replacement policies in the web cache
    Quesada Sanchez, Carlos E.
    Meneses, Esteban
    TECNOLOGIA EN MARCHA, 2006, 19 (04): : 14 - 24
  • [47] Exploring Core and Cache Hierarchy Bottlenecks in Graph Processing Workloads
    Basak, Abanti
    Hu, Xing
    Li, Shuangchen
    Oh, Sang Min
    Xie, Yuan
    IEEE COMPUTER ARCHITECTURE LETTERS, 2018, 17 (02) : 197 - 200
  • [48] Optimizing Machine Learning Workloads in Collaborative Environments
    Derakhshan, Behrouz
    Mahdiraji, Alireza Rezaei
    Abedjan, Ziawasch
    Rabl, Tilmann
    Markl, Volker
    SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 1701 - 1716
  • [49] Replacement policies for a proxy cache
    Rizzo, L
    Vicisano, L
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2000, 8 (02) : 158 - 170
  • [50] Sensitivity of Cache Replacement Policies
    Reineke, Jan
    Grund, Daniel
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2013, 12