Solving for the Wigner functions of the Morse potential in deformation quantization

被引:4
|
作者
Belchev, B. [1 ]
Walton, M. A. [1 ]
机构
[1] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1088/1751-8113/43/22/225206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the time-independent Wigner functions of phase-space quantum mechanics (also known as deformation quantization) for a Morse potential. First, we find them by solving the *-eigenvalue equations, using a method that can be applied to potentials that are polynomial in an exponential. A Mellin transform converts the *-eigenvalue equations to difference equations, and factorized solutions are found directly for all values of the parameters. The symbols found this way are of both diagonal and off-diagonal density operator elements in the energy basis. The Wigner transforms of the density matrices built from the known wavefunctions are then shown to confirm the solutions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Wigner quantization problem for external forces
    Kapuscik, E
    Horzela, A
    PARTICLES, FIELDS, AND GRAVITATION, 1998, 453 : 242 - 248
  • [32] Wigner quantization on the circle and R+
    Chadzitaskos G.
    Tolar J.
    Journal of Nonlinear Mathematical Physics, 2004, 11 (Suppl 1) : 174 - 178
  • [33] Wigner quantization and Lie superalgebra representations
    van der Jeugt, Joris
    Springer Proceedings in Mathematics and Statistics, 2013, 36 : 149 - 165
  • [34] Wigner quantization on the circle and R+
    Chadzitaskos, G
    Tolar, J
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 : 174 - 178
  • [35] Gauge covariant formulation of the Wigner representation through deformation quantization - Application to Keldysh formalism with an electromagnetic field
    Sugimoto, Naoyuki
    Onoda, Shigeki
    Nagaosa, Naoto
    PROGRESS OF THEORETICAL PHYSICS, 2007, 117 (03): : 415 - 429
  • [36] The potential and deformation functions of Otaniemi clay
    Korhonen, KH
    Lojander, M
    Korhonen, O
    PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING VOLS 1-3, 2001, : 171 - 174
  • [37] WIGNER PHASE-SPACE DESCRIPTION OF A MORSE OSCILLATOR
    LEE, HW
    SCULLY, MO
    JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (09): : 4604 - 4610
  • [38] DEFORMATION QUANTIZATION
    WEINSTEIN, A
    ASTERISQUE, 1995, (227) : 389 - 409
  • [39] Morse Shellings Out of Discrete Morse Functions
    Welschinger, Jean-Yves
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025,
  • [40] Quantization is deformation
    Sternheimer, D
    NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 331 - 352