New Changhee q-Euler numbers and polynomials associated with p-adic q-integrals

被引:18
|
作者
Kim, Taekyun
Rim, Seog-Hoon [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math Educ, Taegu 702701, South Korea
[2] Kyungpook Natl Univ, EECS, Taegu 702701, South Korea
关键词
p-adic q-integral; q-Euler numbers and polynomials;
D O I
10.1016/j.camwa.2006.12.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using non-archimedean q-integrals on Z(p) defined in [T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999) 320-329; T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002) 288-299], we define new Changhee q-Euler polynomials and numbers which are different from those of Kim [T. Kim, p-adic q-integrals associated with the Changhee-Barnes' q-Bernoulli polynomials, Integral Transforms Spec. Funct. 15 (2004) 415-420] and Carlitz [L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954) 332-350]. We define generating functions of multiple q-Euler numbers and polynomials. Furthermore we construct a multivariate Hurwitz type zeta function which interpolates the multivariate q-Euler numbers or polynomials at negative integers. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:484 / 489
页数:6
相关论文
共 50 条