Special quasirandom structures of alon

被引:22
|
作者
Weingarten, N. Scott [1 ]
Byrd, Edward F. C. [1 ]
机构
[1] US Army, Res Lab, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA
关键词
Aluminum oxynitride; Special quasirandom structures; Density functional theory; Elastic constants; GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; N-O SYSTEM; ALUMINUM OXYNITRIDE; ELECTRONIC-PROPERTIES; ALN-AL2O3; SECTION; MICROSTRUCTURE; 1ST-PRINCIPLES; CRYSTALLINE;
D O I
10.1016/j.commatsci.2014.09.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The crystal structure of Al23O27N5, which is an ideal stoichiometry of aluminum oxynitride (or alon), is a defect spinel in which a vacancy is present in the unit cell. Despite the lattice positions being fixed, the location of the vacancy and the positions of the five nitrogen atoms are not unique, presenting a challenge to the prediction of the crystal structure. This problem is analogous to random alloys, for which a technique has been developed to identify small scale simulation cells called special quasirandom structures (SQS). We present SQS for alon, and discuss the unique features of these structures for this material. We also modified the SQS methodology to identify the first cubic crystal structure for alon with the above stoichiometry. Published by Elsevier B.V.
引用
收藏
页码:312 / 318
页数:7
相关论文
共 50 条
  • [31] Quasirandom permutations
    Cooper, JN
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 106 (01) : 123 - 143
  • [32] Quasirandom groups
    Gowers, W. T.
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (03): : 363 - 387
  • [33] Quasirandom Ramblings
    Hayes, Brian
    AMERICAN SCIENTIST, 2011, 99 (04) : 282 - 287
  • [34] QUASIRANDOM GROUP ACTIONS
    Gill, Nick
    FORUM OF MATHEMATICS SIGMA, 2016, 4
  • [35] Determination of Vacancy Formation Energies in Binary UZr Alloys Using Special Quasirandom Structure Methods
    Vizoso, Daniel
    Deo, Chaitanya
    FRONTIERS IN MATERIALS, 2021, 8
  • [36] Ab initio modeling of MAX phase solid solutions using the special quasirandom structure approach
    Jiang, C.
    Chroneos, A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (02) : 1173 - 1180
  • [37] σ-Algebras for Quasirandom Hypergraphs
    Towsner, Henry
    RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (01) : 114 - 139
  • [38] Quasirandom arithmetic permutations
    Cooper, JN
    JOURNAL OF NUMBER THEORY, 2005, 114 (01) : 153 - 169
  • [39] Calculations of planar defect energies in substitutional alloys using the special-quasirandom-structure approach
    de Jong, Maarten
    Qi, Liang
    Olmsted, David L.
    van de Walle, Axel
    Asta, Mark
    PHYSICAL REVIEW B, 2016, 93 (09)
  • [40] Quasirandom walk methods
    Lécot, C
    Ogawa, S
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 63 - 85