QUASI-CONVEX FREE POLYNOMIALS

被引:6
|
作者
Balasubramanian, S. [1 ]
McCullough, S. [2 ]
机构
[1] Indian Inst Sci Educ & Res IISER Kolkata, Dept Math & Stat, Kolkata 741246, W Bengal, India
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Free polynomials; quasi-convex; free real algebraic geometry; SUMS;
D O I
10.1090/S0002-9939-2014-11984-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R < x > denote the ring of polynomials in g freely noncommuting variables x = (x(1),..., x(g)). There is a natural involution * on R < x > determined by x(j)* = x(j) and (pq)* = q*p*, and a free polynomial p is an element of R < x > is symmetric if it is invariant under this involution. If X = (X-1,..., X-g) is a g tuple of symmetric n x n matrices, then the evaluation p(X) is naturally defined and further p*(X) = p(X)*. In particular, if p is symmetric, then p(X)* = p(X). The main result of this article says if p is symmetric, p(0) = 0 and for each n and each symmetric positive definite nxn matrix A the set {X : A-p(X) > 0} is convex, then p has degree at most two and is itself convex, or -p is a hermitian sum of squares.
引用
收藏
页码:2581 / 2591
页数:11
相关论文
共 50 条
  • [31] CONDITIONS FOR CONVEXITY OF QUASI-CONVEX FUNCTIONS
    CROUZEIX, JP
    MATHEMATICS OF OPERATIONS RESEARCH, 1980, 5 (01) : 120 - 125
  • [32] Quasi-convex Functions in Carnot Groups
    Mingbao SUN Xiaoping YANG Department of Applied Mathematics
    Department of Applied Mathematics
    Chinese Annals of Mathematics, 2007, (02) : 235 - 242
  • [33] LOWER SEMICONTINUITY OF QUASI-CONVEX INTEGRALS
    MALY, J
    MANUSCRIPTA MATHEMATICA, 1994, 85 (3-4) : 419 - 428
  • [34] Quasi-convex punctions in carnot groups
    Sun, Mingbao
    Yang, Xiaoping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (02) : 235 - 242
  • [35] A Practical Approach to Quasi-convex Optimization
    Dhompongsa, Sompong
    Kumam, Poom
    Khammahawong, Konrawut
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (04): : 1641 - 1647
  • [36] CENTRAL SECTIONS IN QUASI-CONVEX PROGRAMMING
    ENCHEVA, TI
    LEVIN, AI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (11): : 39 - 42
  • [37] TRANSFORMATIONS OF QUASI-CONVEX PROGRAMMING PROBLEMS
    MANAS, M
    EKONOMICKO-MATEMATICKY OBZOR, 1968, 4 (01): : 93 - 99
  • [38] QUASI-CONVEX FUNCTIONS OF HIGHER ORDER
    Mrowiec, Jacek
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1335 - 1354
  • [40] Isomorphic random subspaces and quotients of convex and quasi-convex bodies
    Litvak, AE
    Milman, VD
    Tomczak-Jaegermann, N
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2004, 1850 : 159 - 178