In Situ Nanostructure Generation and Evolution within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity

被引:107
|
作者
Girard, Steven N. [1 ]
He, Jiaqing [1 ,2 ]
Li, Changpeng [3 ]
Moses, Steven [3 ]
Wang, Guoyu [3 ]
Uher, Ctirad [3 ]
Dravid, Vinayak P. [2 ]
Kanatzidis, Mercouri G. [1 ,4 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
关键词
Thermoelectric materials; thermal conductivity; nucleation and growth; semiconductors; FIGURE-OF-MERIT; SPINODAL DECOMPOSITION; PHASE-RELATIONS; PERFORMANCE; PBTE; GERMANIUM; SILICON; TEMPERATURE; SCATTERING; TRANSPORT;
D O I
10.1021/nl100743q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We show experimentally the direct reduction in lattice thermal conductivity as a result of in situ nanostructure generation within a thermoelectric material. Solid solution alloys of the high-performance thermoelectric PbTe-PbS 8% can be synthesized through rapid cooling and subsequent high-temperature activation that induces a spontaneous nucleation and growth of PbS nanocrystals. The emergence of coherent PbS nanostructures reduces the lattice thermal conductivity from similar to 1 to similar to 0.4 W/mK between 400 and 500 K.
引用
收藏
页码:2825 / 2831
页数:7
相关论文
共 50 条
  • [31] Cu-Bi-Se-based pavonite homologue: a promising thermoelectric material with low lattice thermal conductivity
    Cho, Jung Young
    Mun, Hyeona
    Ryu, Byungki
    Kim, Sang Il
    Hwang, Sungwoo
    Roh, Jong Wook
    Yang, Dae Jin
    Shin, Weon Ho
    Lee, Sang Mock
    Choi, Soon-Mok
    Kang, Dae Joon
    Kim, Sung Wng
    Lee, Kyu Hyoung
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (34) : 9768 - 9774
  • [32] Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations
    He, Yuping
    Savic, Ivana
    Donadio, Davide
    Galli, Giulia
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (47) : 16209 - 16222
  • [33] Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite
    Nika, D. L.
    Ghosh, S.
    Pokatilov, E. P.
    Balandin, A. A.
    APPLIED PHYSICS LETTERS, 2009, 94 (20)
  • [34] Lattice thermal conductivity in bulk and nanosheet NaxCoO2
    Demchenko, D. O.
    Ameen, D. B.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 82 : 219 - 225
  • [35] Lattice thermal conductivity modelling of a diatomic nanoscale material
    Awad A.H.
    Nanoscience and Nanotechnology - Asia, 2020, 10 (05): : 602 - 609
  • [36] Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials
    Zheng, XJ
    Zhu, LL
    Zhou, YH
    Zhang, QJ
    APPLIED PHYSICS LETTERS, 2005, 87 (24) : 1 - 3
  • [37] Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying
    Tureson, Nina
    Ngo Van Nong
    Fournier, Daniele
    Singh, Niraj
    Acharya, Somnath
    Schmidt, Susann
    Belliard, Laurent
    Soni, Ajay
    le Febvrier, Arnaud
    Eklund, Per
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (02)
  • [38] Thermal conductivity characterization of polyaniline doped material for thermoelectric applications
    Famengo, A.
    Rossi, S.
    Bison, P.
    Boldrini, S.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXIX, 2017, 10214
  • [39] Utilizing twin interfaces to reduce lattice thermal conductivity of superlattice
    Liu, Yingguang
    Zhang, Jingwen
    Ren, Guoliang
    Chernatynskiy, Aleksandr
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 189
  • [40] Thermal conductivity, thermal diffusivity and thermoelectric power of Sm-based bulk superconductors
    Fujishiro, H
    Kohayashi, S
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2002, 12 (01) : 1124 - 1127