On the optimal number of scales in estimation of fractal signals using wavelets and filter banks

被引:10
|
作者
Hirchoren, GA [1 ]
D'Attellis, CE [1 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Dept Matemat, RA-1063 Buenos Aires, DF, Argentina
关键词
fractional Brownian motion; wavelets; filter banks; estimation;
D O I
10.1016/S0165-1684(97)00140-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we deal with the problem of finding the optimal number of scales used in a multiscale Wiener filter for obtaining the minimum mean-square estimation error of fractional Brownian motion (fBm) in noise. Several simulations are presented avoiding simplificative hypotheses previously used and considering also the effects of aliasing. Furthermore, it is shown that the mean-square error does not a strictly decreasing function with respect to the number of scales J. In all the analyzed cases, the optimal number of scales is J less than or equal to 6. (C) 1997 Elsevier science B.V.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 50 条
  • [31] Spatial resolution enhancement residual coding using hybrid wavelets and directional filter banks
    Bhurane, Ankit Ashokrao
    Chaplot, Prateek
    Nutulapati, Dushyanth
    Gadre, Vikram M.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2015, 40 (07): : 2163 - 2176
  • [32] VIDEO DENOISING USING 3-D HYBRID WAVELETS AND DIRECTIONAL FILTER BANKS
    Eslami, Ramin
    Wu, Xiaolin
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2340 - 2343
  • [33] Harmonics and Interharmonics Analysis of Power Signals using Gaussian Filter Banks
    Miron, Anca
    Chindris, Mircea D.
    Cziker, Andrei
    2014 49TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2014,
  • [35] Estimation of the instantaneous amplitude and the instantaneous frequency of audio signals using complex wavelets
    Ramon Beltran, Jose
    Ponce de Leon, Jesus
    SIGNAL PROCESSING, 2010, 90 (12) : 3093 - 3109
  • [36] Automated detection of abnormal EEG signals using localized wavelet filter banks
    Sharma, Manish
    Patel, Sohamkumar
    Acharya, U. Rajendra
    PATTERN RECOGNITION LETTERS, 2020, 133 : 188 - 194
  • [37] Audlet Filter Banks: A Versatile Analysis/Synthesis Framework Using Auditory Frequency Scales
    Necciari, Thibaud
    Holighaus, Nicki
    Balazs, Peter
    Prusa, Zdenek
    Majdak, Piotr
    Derrien, Olivier
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [38] Medical fusion framework using discrete fractional wavelets and non-subsampled directional filter banks
    Kaur, Gurpreet
    Singh, Sukhwinder
    Vig, Renu
    IET IMAGE PROCESSING, 2020, 14 (04) : 658 - 667
  • [39] Waveform Estimation of Fractal Signals Using Optimum Soft Threshold Technique
    Zhao, Yongjian
    Wang, Hongrun
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 373 - +
  • [40] Automatic Modulation Recognition of Digital Signals Using CWT Based on Optimal Scales
    Lv, Yuanyuan
    Liu, Yuanan
    Liu, Fang
    Gao, Jinchun
    Liu, Kaiming
    Xie, Gang
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 430 - 434