Subshifts of multi-dimensional shifts of finite type

被引:25
|
作者
Quas, AN [1 ]
Trow, PB [1 ]
机构
[1] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
D O I
10.1017/S0143385700000468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every shift of finite type X with positive entropy has proper subshifts of finite type with entropy strictly smaller than the entropy of X, but with entropy arbitrarily close to the entropy of X. Consequently, X contains an infinite chain of subshifts of finite type which is strictly decreasing in entropy.
引用
收藏
页码:859 / 874
页数:16
相关论文
共 50 条
  • [21] ON EMBEDDINGS OF SUBSHIFTS OF FINITE-TYPE
    KOMURO, M
    LECTURE NOTES IN MATHEMATICS, 1983, 1021 : 299 - 301
  • [22] SUBSHIFTS OF FINITE TYPE AND SOFIC SYSTEMS
    WEISS, B
    MONATSHEFTE FUR MATHEMATIK, 1973, 77 (05): : 462 - 474
  • [23] Constructions with Countable Subshifts of Finite Type
    Salo, Ville
    Torma, Ilkka
    FUNDAMENTA INFORMATICAE, 2013, 126 (2-3) : 263 - 300
  • [24] Subshifts of quasi-finite type
    Jérôme Buzzi
    Inventiones mathematicae, 2005, 159 : 369 - 406
  • [25] ENDOMORPHISMS OF IRREDUCIBLE SUBSHIFTS OF FINITE TYPE
    COVEN, EM
    PAUL, ME
    MATHEMATICAL SYSTEMS THEORY, 1975, 8 (02): : 167 - 175
  • [26] A Finite multi-dimensional generalized Gamma Mixture Model
    Alghabashi, Basim
    Bouguila, Nizar
    IEEE 2018 INTERNATIONAL CONGRESS ON CYBERMATICS / 2018 IEEE CONFERENCES ON INTERNET OF THINGS, GREEN COMPUTING AND COMMUNICATIONS, CYBER, PHYSICAL AND SOCIAL COMPUTING, SMART DATA, BLOCKCHAIN, COMPUTER AND INFORMATION TECHNOLOGY, 2018, : 807 - 814
  • [27] Description of the Multi-Dimensional Finite Volume Solver EULER
    Pavel Solin
    Karel Segeth
    Applications of Mathematics, 2002, 47 (2) : 169 - 185
  • [28] Multi-dimensional Toda-type systems
    Razumov, AV
    Saveliev, MV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 112 (02) : 999 - 1022
  • [29] On the Multi-Dimensional Duality Principle of Sawyer Type
    Rakotondratsimba Y.
    Acta Mathematica Sinica, 2001, 17 (1) : 81 - 88
  • [30] Multi-dimensional toda-type systems
    A. V. Razumov
    M. V. Saveliev
    Theoretical and Mathematical Physics, 1997, 112 : 999 - 1022