A hierarchical refinement algorithm for fully automatic gridding in spotted DNA microarray image processing

被引:15
|
作者
Wang, Yu
Ma, rc Q. Ma
Zhang, Kai
Shih, Frank Y. [1 ]
机构
[1] New Jersey Inst Technol, Comp Vis Lab, Coll Comp Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Appl Bioinformat Lab, Coll Comp Sci, Newark, NJ 07102 USA
关键词
image processing-; DNA microarray image; automatic gridding; gene expression;
D O I
10.1016/j.ins.2006.07.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gridding, the first step in spotted DNA microarray image processing, usually requires human intervention to achieve acceptable accuracy. We present a new algorithm for automatic gridding based on hierarchical refinement to improve the efficiency, robustness and reproducibility of microarray data analysis. This algorithm employs morphological reconstruction along with global and local rotation detection, non-parametric optimal thresholding and local fine-tuning without any human intervention. Using synthetic data and real microarray images of different sizes and with different degrees of rotation of subarrays, we demonstrate that this algorithm can detect and compensate for alignment and rotation problems to obtain reliable and robust results. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1123 / 1135
页数:13
相关论文
共 50 条
  • [41] PARTICLE TRACKING VELOCIMETRY - AN AUTOMATIC IMAGE-PROCESSING ALGORITHM
    KHALIGHI, B
    LEE, YH
    APPLIED OPTICS, 1989, 28 (20): : 4328 - 4332
  • [42] Image processing method for automatic measurement of number of DNA breaks
    Saito, Seiki
    Nakamura, Hiroaki
    Kenmotsu, Takahiro
    Oya, Yasuhisa
    Hatano, Yuji
    Tamura, Yuichi
    Fujiwara, Susumu
    Ohtani, Hiroaki
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2021, 8 (02): : 173 - 193
  • [43] Design and Implementation of Fully Convolutional Network Algorithm in Landscape Image Processing
    Pan, Yinan
    Li, Yuan
    Jin, Jing
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [44] Low-complexity PDE-based approach for automatic microarray image processing
    Bogdan Belean
    Romulus Terebes
    Adrian Bot
    Medical & Biological Engineering & Computing, 2015, 53 : 99 - 110
  • [45] Design and Implementation of Fully Convolutional Network Algorithm in Landscape Image Processing
    Pan, Yinan
    Li, Yuan
    Jin, Jing
    Wireless Communications and Mobile Computing, 2022, 2022
  • [46] Low-complexity PDE-based approach for automatic microarray image processing
    Belean, Bogdan
    Terebes, Romulus
    Bot, Adrian
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2015, 53 (02) : 99 - 110
  • [47] Complementary DNA Microarray Image Processing Based on the Fuzzy Gaussian Mixture Model
    Athanasiadis, Emmanouil I.
    Cavouras, Dionisis A.
    Spyridonos, Panagiota P.
    Glotsos, Dimitris Th.
    Kalatzis, Ioannis K.
    Nikiforidis, George C.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (04): : 419 - 425
  • [48] Evaluation of a fully automatic medical image registration algorithm based on mutual information
    Tanaćs, Attila
    Kuba, Attila
    Acta Cybernetica, 2003, 16 (02): : 327 - 336
  • [49] Application of a Fully Automatic Autofocusing Algorithm for Post-Processing of Synthetic Aperture Radar Images based on Image Entropy Minimization
    Malamou, A.
    Karakasiliotis, A.
    Kallitsis, E.
    Boultadakis, G.
    Frangos, P.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2013, 19 (06) : 95 - 98
  • [50] DNA microarray image processing based on minimum error segmentation and histogram analysis
    Wu, SH
    Yan, H
    Color Imaging X: Processing, Hardcopy, and Applications, 2005, : 562 - 568