Dialogue Intent Classification with Long Short-Term Memory Networks

被引:7
|
作者
Meng, Lian [1 ]
Huang, Minlie [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
关键词
D O I
10.1007/978-3-319-73618-1_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dialogue intent analysis plays an important role for dialogue systems. In this paper, we present a deep hierarchical LSTM model to classify the intent of a dialogue utterance. The model is able to recognize and classify user's dialogue intent in an efficient way. Moreover, we introduce a memory module to the hierarchical LSTM model, so that our model can utilize more context information to perform classification. We evaluate the two proposed models on a real-world conversational dataset from a Chinese famous e-commerce service. The experimental results show that our proposed model outperforms the baselines.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 50 条
  • [31] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [32] Ground target classification using mmWave radar with bidirectional long short-term memory networks
    Gunes, Oytun
    Ege, Mert
    Morgul, Omer
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [33] Intrapartum Fetal-State Classification using Long Short-Term Memory Neural Networks
    Warrick, Philip A.
    Hamilton, Emily F.
    2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [34] Convolutional Long Short-Term Memory Networks for Doppler-Radar Based Target Classification
    Khalid, Habib-ur-Rehman
    Pollin, Sofie
    Rykunov, Maxim
    Bourdoux, Andre
    Sahli, Hichem
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,
  • [35] Conditioning and time representation in long short-term memory networks
    Francois Rivest
    John F. Kalaska
    Yoshua Bengio
    Biological Cybernetics, 2014, 108 : 23 - 48
  • [36] Long short-term memory networks in memristor crossbar arrays
    Li, Can
    Wang, Zhongrui
    Rao, Mingyi
    Belkin, Daniel
    Song, Wenhao
    Jiang, Hao
    Yan, Peng
    Li, Yunning
    Lin, Peng
    Hu, Miao
    Ge, Ning
    Strachan, John Paul
    Barnell, Mark
    Wu, Qing
    Williams, R. Stanley
    Yang, J. Joshua
    Xia, Qiangfei
    NATURE MACHINE INTELLIGENCE, 2019, 1 (01) : 49 - 57
  • [37] Long Short-Term Memory Networks for Automatic Generation of Conversations
    Fujita, Tomohiro
    Bai, Wenjun
    Quan, Changqin
    2017 18TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNDP 2017), 2017, : 483 - 487
  • [38] Reliability Estimation Using Long Short-Term Memory Networks
    Davila-Frias, Alex
    Khumprom, Phattara
    Yadav, Om Prakash
    2023 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, RAMS, 2023,
  • [39] Long Short-Term Memory Networks for Vehicle Sensor Fusion
    Gandy, Jonah T.
    Ball, John E.
    AUTONOMOUS SYSTEMS: SENSORS, PROCESSING AND SECURITY FOR GROUND, AIR, SEA AND SPACE VEHICLES AND INFRASTRUCTURE 2022, 2022, 12115
  • [40] Long short-term memory networks in memristor crossbar arrays
    Can Li
    Zhongrui Wang
    Mingyi Rao
    Daniel Belkin
    Wenhao Song
    Hao Jiang
    Peng Yan
    Yunning Li
    Peng Lin
    Miao Hu
    Ning Ge
    John Paul Strachan
    Mark Barnell
    Qing Wu
    R. Stanley Williams
    J. Joshua Yang
    Qiangfei Xia
    Nature Machine Intelligence, 2019, 1 : 49 - 57