Computing Strongly Admissible Sets

被引:3
|
作者
Dvorak, Wolfgang [1 ]
Wallner, Johannes P. [1 ]
机构
[1] TU Wien, Vienna, Austria
来源
COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2020) | 2020年 / 326卷
基金
奥地利科学基金会;
关键词
abstract argumentation; strongly admissible; computational complexity; answer set programming; integer linear programming; ARGUMENTATION; SEMANTICS;
D O I
10.3233/FAIA200503
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we revisit computational aspects of strongly admissible semantics in Dung's abstract argumentation frameworks. First, we complement the existing complexity analysis by focusing on the problem of computing strongly admissible sets of minimum size that contain a given argument and providing NP-hardness as well as hardness of approximation results. Based on these results, we then investigate two approaches to compute (minimum-sized) strongly admissible sets based on Answer Set Programming (ASP) and Integer Linear Programming (ILP), and provide an experimental comparison of their performance.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条
  • [41] Epidemic management with admissible and robust invariant sets
    Esterhuizen, Willem
    Levine, Jean
    Streif, Stefan
    PLOS ONE, 2021, 16 (09):
  • [42] MAXIMAL SETS AND ADMISSIBLE ORDINALS - PRELIMINARY REPORT
    LERMAN, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A614 - &
  • [43] ADMISSIBLE SETS AND SATURATION OF MODELS - PRELIMINARY REPORT
    ADAMSON, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A714 - A714
  • [44] Negative Numberings in Admissible Sets. I
    Kalimullin I.S.
    Puzarenko V.G.
    Faĭzrakhmanov M.K.
    Siberian Advances in Mathematics, 2023, 33 (4) : 293 - 321
  • [45] ON COLLECTION OF ALL COMPUTABLE SUBSETS ON ADMISSIBLE SETS
    Puzarenko, V. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 1 - 7
  • [46] ORACLE BASED APPROACH TO ADMISSIBLE INVARIANT SETS
    Redondo, M. J.
    Bravo, J. M.
    Alamo, T.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 411 - 416
  • [47] Weakly Admissible Meshes and Discrete Extremal Sets
    Bos, Len
    De Marchi, Stefano
    Sommariva, Alvise
    Vianello, Marco
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (01): : 1 - 12
  • [48] Negative Numberings in Admissible Sets. II
    Kalimullin I.S.
    Puzarenko V.G.
    Faizrakhmanov M.K.
    Siberian Advances in Mathematics, 2024, 34 (1) : 41 - 66
  • [49] On defense strength of blocking defeaters in admissible sets
    Martinez, Diego C.
    Garcia, Alejandro J.
    Simari, Guillermo R.
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, 2007, 4798 : 140 - +
  • [50] PRIORITY ARGUMENTS AND ADMISSIBLE SETS - PRELIMINARY REPORT
    STOLTENB.V
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A504 - A504