General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation

被引:237
|
作者
Cheng, Liang [1 ,2 ]
Yan, Jing [3 ]
Zhu, Guan-Nan [1 ,2 ]
Luo, Jia-Yan [1 ,2 ]
Wang, Cong-Xiao [1 ,2 ]
Xia, Yong-Yao [1 ,2 ]
机构
[1] Fudan Univ, Dept Chem, Inst New Energy, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Inst New Energy, Shanghai 200433, Peoples R China
[3] Hitachi China Res & Dev Corp, Shanghai 200020, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; MESOPOROUS NANOCOMPOSITE; NEGATIVE-ELECTRODE; ALLOY ANODE; HIGH-POWER; LIMN2O4; INSERTION; NANOTUBES;
D O I
10.1039/b914604k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple approach is proposed to synthesize nanostructured Li4Ti5O12 spinel materials with different morphologies (nanorods, hollow spheres and nanoparticles), in which the TiO2 precursor is first coated with a conductive carbon layer by the chemical vapour decomposition (CVD) method, followed by a solid-state reaction with lithium salt. The Li4Ti5O12 obtained was characterised by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as galvanostatic measurements. The results indicate that, by employing the carbon pre-coating process, the carbon-coated nanostructured Li4Ti5O12 can maintain the initial morphologies of the TiO2 precursors and also show significant improvement in the rate capability for lithium-ion intercalation due to both good electronic conductivity and the short lithium-ion diffusion path.
引用
收藏
页码:595 / 602
页数:8
相关论文
共 50 条
  • [21] Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries
    Luo, Hongjun
    Shen, Laifa
    Rui, Kun
    Li, Hongsen
    Zhang, Xiaogang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 572 : 37 - 42
  • [22] Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries
    Zhang, X. (azhangxg@nuaa.edu.cn), 1600, Elsevier Ltd (572):
  • [23] Ion-Exchange Synthesis of Li4Ti5O12 Nanotubes and Nanoparticles for High-Rate Li-Ion Batteries
    Yagi, Shunsuke
    Morinaga, Tadahiko
    Togo, Masakazu
    Tsuda, Hiroshi
    Shio, Shoichiro
    Nakahira, Atsushi
    MATERIALS TRANSACTIONS, 2016, 57 (01) : 42 - 45
  • [24] Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries
    Wang, Li
    Xiao, Qizhen
    Li, Zhaohui
    Lei, Gangtie
    Zhang, Ping
    Wu, Lijuan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (10) : 3307 - 3313
  • [25] Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries
    Li Wang
    Qizhen Xiao
    Zhaohui Li
    Gangtie Lei
    Ping Zhang
    Lijuan Wu
    Journal of Solid State Electrochemistry, 2012, 16 : 3307 - 3313
  • [26] The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12
    Dsoke, Sonia
    Fuchs, Bettina
    Gucciardi, Emanuele
    Wohlfahrt-Mehrens, Margret
    JOURNAL OF POWER SOURCES, 2015, 282 : 385 - 393
  • [27] EASY SYNTHESIS OF Li4Ti5O12/C MICROSPHERES CONTAINING NANOPARTICLES AS ANODE MATERIAL FOR HIGH-RATE Li-ION BATTERIES
    Zheng, Xiaodong
    Dong, Lina
    Dong, Chenchu
    SURFACE REVIEW AND LETTERS, 2014, 21 (02)
  • [28] Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material
    Lin, Chih-Yuan
    Jhan, Yi-Ruei
    Duh, Jenq-Gong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (24) : 6965 - 6968
  • [29] Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery
    Yuan, Tao
    Cai, Rui
    Wang, Ke
    Ran, Ran
    Liu, Shaomin
    Shao, Zongping
    CERAMICS INTERNATIONAL, 2009, 35 (05) : 1757 - 1768
  • [30] Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries
    Zhang, Lihui
    Xu, Yuxing
    Liu, Zhenfa
    Wei, Aijia
    Li, Wen
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (02): : 949 - 955