Stability of tautological bundles on symmetric products of curves

被引:0
|
作者
Krug, Andreas [1 ]
机构
[1] Philipps Univ Marburg, Fachbereich Math & Informat 12, D-35032 Marburg, Germany
关键词
SECANT BUNDLES; POWER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, if C is a smooth projective curve over the complex numbers, and E is a stable vector bundle on C whose slope does not lie in the interval [-1, n - 1], then the associated tautological bundle E-[n] on the symmetric product C-(n) is again stable. Also, if E is semi-stable and its slope does not lie in (-1, n - 1), then E-[n] is semi-stable.
引用
收藏
页码:1785 / 1800
页数:16
相关论文
共 50 条
  • [31] Integrable systems and symmetric products of curves
    Pol Vanhaecke
    Mathematische Zeitschrift, 1998, 227 : 93 - 127
  • [32] M-curves and symmetric products
    Indranil Biswas
    Shane D’Mello
    Proceedings - Mathematical Sciences, 2017, 127 : 615 - 624
  • [33] Seshadri constants on symmetric products of curves
    Ross, J.
    MATHEMATICAL RESEARCH LETTERS, 2007, 14 (01) : 63 - 75
  • [34] Integrable systems and symmetric products of curves
    Vanhaecke, P
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (01) : 93 - 127
  • [35] M-curves and symmetric products
    Biswas, Indranil
    D'Mello, Shane
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (04): : 615 - 624
  • [36] STABILITY CONDITIONS FOR LINE BUNDLES ON NODAL CURVES
    Pagani, Nicola
    Tommasi, Orsola
    arXiv, 2023,
  • [37] Stability conditions for line bundles on nodal curves
    Pagani, Nicola
    Tommasi, Orsola
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [38] Stability of Picard sheaves for vector bundles on curves
    Hein, Georg
    Ploog, David
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 122 : 59 - 68
  • [40] TAUTOLOGICAL PAIRINGS ON MODULI SPACES OF CURVES
    Cavalieri, Renzo
    Yang, Stephanie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (01) : 51 - 62