Spatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependencies

被引:76
|
作者
Tian, Chenyu [1 ]
Chan, Wai Kin [1 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 510006, Guangdong, Peoples R China
关键词
NEURAL-NETWORK; SPEED PREDICTION;
D O I
10.1049/itr2.12044
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic prediction on road networks is highly challenging due to the complexity of traffic systems and is a crucial task in successful intelligent traffic system applications. Existing approaches mostly capture the static spatial dependency relying on the prior knowledge of the graph structure. However, the spatial dependency can be dynamic, and sometimes the physical structure may not reflect the genuine relationship between roads. To better capture the complex spatial-temporal dependencies and forecast traffic conditions on road networks, a multi-step prediction model named Spatial-Temporal Attention Wavenet (STAWnet) is proposed. Temporal convolution is applied to handle long time sequences, and the dynamic spatial dependencies between different nodes can be captured using the self-attention network. Different from existing models, STAWnet does not need prior knowledge of the graph by developing a self-learned node embedding. These components are integrated into an end-to-end framework. The experimental results on three public traffic prediction datasets (METR-LA, PEMS-BAY, and PEMS07) demonstrate effectiveness. In particular, in the 1 h ahead prediction, STAWnet outperforms state-of-the-art methods with no prior knowledge of the network.
引用
收藏
页码:549 / 561
页数:13
相关论文
共 50 条
  • [21] DST: A Deep Urban Traffic Flow Prediction Framework Based on Spatial-Temporal Features
    Wang, Jingyuan
    Cao, Yukun
    Du, Ye
    Li, Li
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 417 - 427
  • [22] Unified Spatial-Temporal Neighbor Attention Network for Dynamic Traffic Prediction
    Long, Wangchen
    Xiao, Zhu
    Wang, Dong
    Jiang, Hongbo
    Chen, Jie
    Li, You
    Alazab, Mamoun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 1515 - 1529
  • [23] Capturing Local and Global Spatial-Temporal Correlations of Spatial-Temporal Graph Data for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Li, Jianxin
    Wu, Dan
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [24] TPGraph: A Spatial-Temporal Graph Learning Framework for Accurate Traffic Prediction on Arterial Roads
    Ouyang, Jinhui
    Yu, Mingxia
    Yu, Weiren
    Qin, Zheng
    Regan, Amelia C.
    Wu, Di
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3911 - 3926
  • [25] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [26] Meta Graph Transformer: A Novel Framework for Spatial-Temporal Traffic Prediction
    Ye, Xue
    Fang, Shen
    Sun, Fang
    Zhang, Chunxia
    Xiang, Shiming
    NEUROCOMPUTING, 2022, 491 : 544 - 563
  • [27] Sampling Spatial-Temporal Attention Network for Traffic Forecasting
    Chen, Mao
    Xu, Yi
    Han, Liangzhe
    Sun, Leilei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 121 - 136
  • [28] Combining random forest and graph wavenet for spatial-temporal data prediction
    Chen C.
    Xu Y.
    Zhao J.
    Chen L.
    Xue Y.
    Intelligent and Converged Networks, 2022, 3 (04): : 364 - 377
  • [29] Multi-Scale Spatial-Temporal Transformer: A Novel Framework for Spatial-Temporal Edge Data Prediction
    Ming, Junhao
    Zhang, Dongmei
    Han, Wei
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [30] Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Yao, Zhixiu
    Xia, Shichao
    Li, Yun
    Wu, Guangfu
    Zuo, Linli
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8592 - 8605