A Generalized Kernel Consensus-Based Robust Estimator

被引:42
|
作者
Wang, Hanzi [1 ]
Mirota, Daniel [2 ]
Hager, Gregory D. [2 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
Robust statistics; model fitting; kernel density estimation; motion estimation; pose estimation; RANGE IMAGE SEGMENTATION;
D O I
10.1109/TPAMI.2009.148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new Adaptive-Scale Kernel Consensus (ASKC) robust estimator as a generalization of the popular and state-of-the-art robust estimators such as RANdom SAmple Consensus (RANSAC), Adaptive Scale Sample Consensus (ASSC), and Maximum Kernel Density Estimator (MKDE). The ASKC framework is grounded on and unifies these robust estimators using nonparametric kernel density estimation theory. In particular, we show that each of these methods is a special case of ASKC using a specific kernel. Like these methods, ASKC can tolerate more than 50 percent outliers, but it can also automatically estimate the scale of inliers. We apply ASKC to two important areas in computer vision, robust motion estimation and pose estimation, and show comparative results on both synthetic and real data.
引用
收藏
页码:178 / 184
页数:7
相关论文
共 50 条
  • [31] Consensus-based Robust Clustering and Leader Election Algorithm for homogeneous UAV clusters
    Feng, Tao
    Fan, Weiping
    Tang, Jiuyang
    Zeng, Weixin
    2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [32] A consensus-based transparency checklist
    Aczel, Balazs
    Szaszi, Barnabas
    Sarafoglou, Alexandra
    Kekecs, Zoltan
    Kucharsky, Simon
    Benjamin, Daniel
    Chambers, Christopher D.
    Fisher, Agneta
    Gelman, Andrew
    Gernsbacher, Morton A.
    Ioannidis, John P.
    Johnson, Eric
    Jonas, Kai
    Kousta, Stavroula
    Lilienfeld, Scott O.
    Lindsay, D. Stephen
    Morey, Candice C.
    Munafo, Marcus
    Newell, Benjamin R.
    Pashler, Harold
    Shanks, David R.
    Simons, Daniel J.
    Wicherts, Jelte M.
    Albarracin, Dolores
    Anderson, Nicole D.
    Antonakis, John
    Arkes, Hal R.
    Back, Mitja D.
    Banks, George C.
    Beevers, Christopher
    Bennett, Andrew A.
    Bleidorn, Wiebke
    Boyer, Ty W.
    Cacciari, Cristina
    Carter, Alice S.
    Cesario, Joseph
    Clifton, Charles
    Conroy, Ronan M.
    Cortese, Mike
    Cosci, Fiammetta
    Cowan, Nelson
    Crawford, Jarret
    Crone, Eveline A.
    Curtin, John
    Engle, Randall
    Farrell, Simon
    Fearon, Pasco
    Fichman, Mark
    Frankenhuis, Willem
    Freund, Alexandra M.
    NATURE HUMAN BEHAVIOUR, 2020, 4 (01): : 4 - 6
  • [33] Robust Consensus-Based Distributed Energy Management for Microgrids With Packet Losses Tolerance
    Duan, Jie
    Chow, Mo-Yuen
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (01) : 281 - 290
  • [34] Robust Distributed Consensus-Based Filtering for Uncertain Systems over Sensor Networks
    Rocha, Kaio D. T.
    Terra, Marco H.
    IFAC PAPERSONLINE, 2020, 53 (02): : 3571 - 3576
  • [35] CONSTRAINED CONSENSUS-BASED OPTIMIZATION
    Borghi, Giacomo
    Herty, Michael
    Pareschi, Lorenzo
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (01) : 211 - 236
  • [36] On Consensus-Based Community Detection
    Fardad, Makan
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1577 - 1582
  • [37] Consensus-based Particle Filter
    Liu, Xiangyu
    Wang, Yan
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 577 - 580
  • [38] Evolution strategy sampling consensus for robust estimator
    Toda Y.
    Kubota N.
    1600, Fuji Technology Press (20): : 788 - 802
  • [39] Evolution Strategy Sampling Consensus for Robust Estimator
    Toda, Yuichiro
    Kubota, Naoyuki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2016, 20 (05) : 788 - 802
  • [40] Consensus-Based Distributed Kernel One-class Support Vector Machine for Anomaly Detection
    Wang, Tianyao
    He, Fan
    Yang, Ruikai
    Ye, Zhixing
    Huang, Xiaolin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,